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Abstract
Aging is inevitable, and how to age healthily is a key concern. Additive manufacturing 
offers many solutions to this problem. In this paper, we first briefly introduce various 
3D printing technologies commonly used in the biomedical field, particularly in aging 
research and aging care. Next, we closely examine aging-related health conditions of 
nervous system, musculoskeletal system, cardiovascular system, and digestive system 
with a focus on the application of 3D printing in these fields, including the creation 
of in vitro models and implants, production of drugs and drug delivery systems, and 
fabrication of rehabilitation and assistive medical devices. Finally, the opportunities, 
challenges, and prospects of 3D printing in the field of aging are discussed.

Keywords: Aging; 3D-printing; Biomaterials; Disease model; Regenerative medicine, 
Aging care

1. Introduction
On November 15, 2022, the United Nations announced that the world’s population had 
reached 8 billion and was expected to exceed 10 billion by the 2080s[1]. The population 
growth is partly due to improved living standards and medical conditions, which leads 
to lower mortality rates and increased life expectancy. These huge numbers point to a 
problem that needs to be taken seriously by all countries: superimposed on declining 
fertility rates, the global population is rapidly aging as life expectancy increases. In the next 
30 years, the global elderly population is expected to more than double. According to the 
estimates by China’s National Health Commission, there will be more than 400 million 
individuals aged over 60 around 2035, making up more than 30% of the population 
and entering a stage of significant aging[2]. Aging is a process that human beings must 
undergo, and the consequences of aging are a gradual and irreversible decline in the 
physiological functions of all organs, which is caused by the long-term accumulation 
of various damages[3,4]. Many problems brought about by aging have become the focus 
of current and future research. First of all, the increase of aging will inevitably lead to 
an increase in aging-related diseases. To date, biologists have agreed that potentially, 
there is an unrecognized but important link between aging and many chronic diseases 
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in humans, including neurodegenerative diseases (NDD), 
bone degenerative diseases, cardiovascular diseases, and 
digestive diseases among others. Aging is one of the major 
risk factors for severe debilitating as well as life-threatening 
diseases; as a result, the incidence of these diseases increases 
with age[4,5]. The treatment of these diseases is an important 
issue. So far, the pathogenesis of these diseases has not 
been fully understood owing to the complexity of human 
body and difficulty in obtaining human tissues for studies. 
While animal models and in  vitro cellular models are 
often used for disease studies, there are many limitations. 
Furthermore, many severe conditions caused by aging, 
such as osteoporosis and heart failure, can only be treated 
by transplantation. However, autologous or allogeneic 
transplantation have many drawbacks, such as limited 
source and secondary infection. Therefore, it is important 
to find a new way to address organ or tissue shortage[6-9]. 
Finally, elderly people often experience difficulty in eating 
and drinking due to swallowing disorders as well as tremors 
and mobility problems caused by degenerative diseases, 
which adversely affects the normal life of the elderly 
and entails intensive geriatric care. The development of 
targeted diets and assistive medical devices tailored to 
these conditions is one of the keys to improving life quality 
of elderly people. In short, there are many challenges 
associated with aging, and we need new solutions[10].

The emergence of additive manufacturing (AM) holds 
a great promise to address these challenges. AM, frequently 

referred to as 3D printing, is a process for creating parts 
with intricate 3D structures by depositing materials layer by 
layer. 3D printing has been widely incorporated in a diverse 
range of biomedical applications because of its unique 
advantages in manufacturing complex structures that were 
once considered impossible or difficult to fabricate and in 
producing parts with higher degree of customization. For 
instance, 3D printing has been extensively used to create 
anatomical models according to computed tomography 
(CT) or magnetic resonance imaging (MRI) images for 
presurgical visualization and practice[11]. 3D printing also 
enables the precise construction of 3D tissue structures 
with biologically active materials, biochemical substances, 
and cells[12]. In regenerative medicine, 3D bioprinting is 
capable of creating scaffold-based or scaffold-free tissues 
and organs such as brain, liver, kidney, cartilage tissue, 
blood vessels, and heart[13-19]. In drug delivery, 3D-printed 
microneedles are used to control the delivery volume 
and drug release rate[20,21]. In the area of geriatric care, 3D 
printing has been used to create dysphagia diet for the 
elderly with swallowing disorders[22,23]. 3D printing is also 
widely used to create customized hearing aids, tremor aids, 
and other rehabilitation and assistive medical devices.

Aging is inevitable, but there are many ways of 
promoting healthy and active aging with the help of AM 
technology. This review article first briefly introduces 
various 3D printing technologies commonly used in 
biomedical field, either as tools for fundamental research 

Figure 1. Overview of additive manufacturing for aging from both technology and application perspectives.
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or healthcare applications. Next, health conditions that 
are associated with aging are closely examined according 
to human body systems with a strong focus on the 
applications of 3D printing in these areas, including the 
creation of in vitro models, synthesis of therapeutics, and 
fabrication of rehabilitation and assistive devices (Figure 1).  
Although 3D printing may not be directly used for 
addressing the aging issues of these human systems, it 
is used to improve conditions in these systems that are 
associated with aging. This review also includes some 
applications for general tissue engineering, but applicable 
for addressing human aging problems. Some of the 3D 
printing applications are not exclusively for aging-related 
conditions, but also used for other purposes. In the end, 
the opportunities, challenges, and prospects of 3D printing 
in the field of aging are discussed.

2. 3D printing methods commonly  
used in aging
In 2009, ASTM International Technical Committee F42 
on AM classified AM (which is used interchangeably 
with 3D printing in this article) into seven processes, 
including material extrusion, material jetting, binder 
jetting, vat photopolymerization, sheet lamination, powder 
bed fusion, and directed energy deposition[24]. Material 
extrusion is a method in which the ink is extruded from 
a nozzle and selectively deposited according to the desired 
pattern. Compared with other 3D printing methods, it has 
the advantages of low printing cost, broad applicability to 
many material systems, simple and convenient operation, 
and fast printing speed. One of the more precise 3D printing 
methods is material jetting, which prints by ejecting liquid 
droplets into desired patterns that are subsequently cured 
by UV or other means. Vat photopolymerization is an 
AM method that uses photo-activated polymerization to 
selectively cure liquid photopolymer in a vat layer by layer 
into 3D structures. It has the benefits of high processing 
accuracy and smooth surface. Binder jetting creates 3D 
structures by spraying adhesive onto a powder bed to 
selectively bind powder materials into desired 3D structures. 
Postprocessing is often required to permanently set the 
shape of printed parts. The principle of sheet lamination is 
that the material sheets are cut by laser, and then bonded 
or welded together to form a solid block. Sheet lamination 
printing technology is available in materials other than 
sheet metal and even in almost any other material that can 
be curled, such as paper. Powder bed fusion does not use 
adhesives to bind the powders together. Instead, a high-
energy beam, such as a laser beam or electron beam, is 
directly imparted on the power bed to selectively sinter 
or melt powder primers into solid parts layer by layer. In 
the directed energy deposition, the material melts during 

deposition with a focused thermal energy source (e.g., laser 
or plasma arc). This process is now only used for metals. 
Currently, the 3D printing methods that are commonly 
used in the biomedical field include material extrusion, 
vat photopolymerization, and material jetting, which are 
described in detail in Table 1.

3. Applications of 3D printing in medical 
conditions associated with aging
3.1. Nervous system
By 2040, the World Health Organization (WHO) forecast 
that due to the aging of the population, neurodevelopmental 
disorder (NDD) will overtake cancer as the second most 
deadly human disease[53]. Aging is an important risk factor 
for NDD, such as Alzheimer’s disease (AD), Parkinson’s 
disease (PD), amyotrophic lateral sclerosis (ALS), and 
Huntington’s disease (HD). Frustratingly, almost all these 
diseases have no effective cures available today. Studies 
show that the incidence of AD, PD, and ALS is significantly 
positively correlated with age[54-57]. Aging causes multiple 
unfavorable changes in the organism, which lead to a 
progressive loss of synapses and inflammatory response in 
the nervous system, and finally to neuronal death[3]. These 
phenomena are observed in cells of neural tissues where 
degenerative lesions occur, but the sequence and intensity 
of their occurrence vary.

3.1.1. Alzheimer’s disease
According to the latest statistics released by the Alzheimer’s 
Association International, by 2030, 75 million people 
are anticipated to have dementia globally[58]. The clinical 
manifestations of AD are mainly cognitive dysfunction 
and memory impairment, and the main pathological 
features are the formation of senile plaques by extracellular 
β-like amyloid deposition in the brain and intracellular tau 
protein hyperphosphorylation, leading to the formation 
of intracellular fiber. There are many hypotheses about 
the pathogenesis of AD, such as amyloid β protein (Aβ) 
toxicity, tau protein hyperphosphorylation, cholinergic 
nervous system damage, gene mutation, vascular 
factors, oxidative stress, neuroinflammatory response, 
mitochondrial dysfunction, autophagy disorder, insulin 
signaling abnormalities, and intestinal flora imbalance[59-64].

3.1.2. Parkinson’s disease
After AD, PD is the second most prevalent 
neurodegenerative disease[65]. As a result of the inability 
to modulate motor activities, PD is characterized by 
resting tremor, motor bradykinesia, stiffness, and other 
symptoms that compromise the quality of life and finally 
result in severe disability. PD is primarily due to the loss of 
nigrostriatal dopaminergic neuron, resulting in a significant 
decline in the dopamine levels in the striatum. Studies 
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have shown that oxidative stress, defective mitochondrial 
function, protein misfolding and aggregation, and glial 
cell proliferation play a significant part in the degenerative 
death of dopaminergic neurons[66,67].

3.1.3. Amyotrophic lateral sclerosis
A defining feature of ALS is the progressive degeneration 
of motor neurons in the brain and spinal cord, a rare 
neurological illness that affects both upper and lower motor 
neurons. The clinical manifestations are progressive muscle 
weakness and atrophy throughout the body, and patients 
eventually die due to swallowing and breathing difficulties. 
The imbalance of neural protein homeostasis, abnormal 
proteins proliferation and spreading in a prion-like 
manner, mitochondria malfunction, glutamate-mediated 
excitatory neurotoxicity, impaired intraneuronal substance 
transport, and RNA metabolism disorders, are all currently 
recognized mechanisms of ALS pathogenesis[68-70].

3.1.4. The role of 3D printing in the treatment and 
research of neurological diseases
Although great efforts have been made over the years to 
study NDD, only limited progress is made because the 
human nervous system is one of the most hierarchically 
and functionally complicated biological systems. The 
inherent difficulty in obtaining human tissue samples 
presents the biggest hurdle to the understanding of human 
central nervous system development; therefore, research in 
this area traditionally rely on studies conducted in animal 
models[71]. Animal models are the gold standard because 
they have the highest level of physiological relevance. 
Nevertheless, owing to significant genetic, biochemical, 
and metabolic differences between species, animal models 
frequently do not accurately reflect the reality of human 
patients[72]. Furthermore, animal tests are time-consuming 
and expensive. Meanwhile, ex vivo models cultured with 
neural sectioning and cell-based 2D in vitro culture models 
have been widely used. The former has the advantage of 
easy experimental manipulation and easy correction for 
image analysis. However, once the section is separated 
from the body, significant functionality is rapidly lost[73]. 
The latter is also widely used today due to its ease of 
manipulation and low cost, but 2D cultures are usually 
insufficient to reproduce specific physiological features 
due to many limitations such as insufficient intercellular 
interactions with the extracellular matrix[74]. A more 
complex environment and longer lifespan are provided by 
3D cell cultures which also tend to be more instructive and 
prescriptive[75]. A superior in vitro complement to animal 
models is thought to be 3D neuronal models because of 
their closer physiological relevance. As a result of their 
capability of producing more accurate neural tissue-like 
structures that combine various cell types and materials 

to simulate physical and biochemical signaling, various 
3D culture systems, such as cell biology-based models 
(spheres and organs) and engineered models (scaffolds and 
microfluidic platforms), are now becoming more and more 
popular[76,77]. For example, human pluripotent stem cells 
were differentiated by Jo et al.[77] into massive multicellular 
organoid structures with unique neuronal cell layers that 
expressed markers specific to the human midbrain. More 
importantly, dopamine synthesis, electrically active, and 
functionally developed midbrain dopaminergic (mDA) 
neurons were found in the 3D midbrain-like organoid. 
The 3D midbrain-like organoids (MLO) were found to be 
structurally similar to neuromelanin-like particles from 
human substantia nigra tissue. Unlike human mDA neurons 
produced using a 2D technique, MLOs are produced from 
mouse embryonic stem cells. The emergence of pluripotent 
stem cell-based neural-like organs more realistically 
simulates the developmental progress of the nervous 
system. It offers a non-ethically constrained platform for 
studying human neurodevelopment, a new platform for 
drug screening, and a highly informative complement to 
existing 2D culture methods and animal model systems[78]. 
In addition, organoids have made it possible to obtain 
cells closer to natural human development for cell therapy. 
However, the organoid-based 3D models are limited by the 
relatively simple structure as well as the absence of vascular 
nerve distribution and extracellular microenvironment.

The emergence of 3D bioprinting has provided a new 
tool for 3D culture, and the combination of 3D printing 
and organoid can effectively address the aforementioned 
problems. 3D printing can automatically reproduce 
predesigned models using cells and biological materials 
to simulate the complex tissue structure and natural 
physiological environment. Lozano et al.[13] proposed a 
new approach for bioprinting 3D brain-like structures 
consisting of discrete layers of primary neuronal cells 
encapsulated in hydrogels (Figure 2A). The brain-like 
structure was 3D-printed by using a bioink composed of 
peptide-modified gellan gum RGD (RGD-GG; RGD stands 
for arginine-glycine-aspartic acid) and primary cortical 
neurons. The bioinks had the ability to accommodate 
and support the cell growth and network formation in 
specific hierarchical structures, and can be 3D-printed 
into multilayer brain-like structures by direct ink writing 
(DIW). More precise 3D in vitro microstructures could be 
duplicated using these 3D-printed brain-like structures, 
which would help us comprehend the mechanisms of 
brain damage and neurodegenerative disorders. NDD 
usually lead to irreversible neuronal damage and death. 
Promoting neuronal targeting and regeneration is one 
solution to treating NDD, and directly 3D printing neural 
stem cells (NSCs) to create novel scaffolds that promote 
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neural differentiation and neuronal regeneration is an 
effective approach. Gu et al.[79] constructed a 3D neural 
mini-tissue construct (nMTC) by 3D-printing human 
neural stem cells (hNSCs) using DIW. hNSCs differentiated 
into functional neurons in situ and supported glial cells 
(Figure 2B). Zhou et al.[80] fabricated gelatin methacryloyl 
(GelMA)-dopamine(DA) hierarchical neural scaffolds 
with NSCs using a customized stereolithography (SLA) 3D 
printer. The GelMA-DA scaffold had a 3D environment 
that was extremely porous and connected, which boosted 
the gene expression of the neuronal markers, namely TUJ1 
and MAP2, supported NSC proliferation, and promoted 
neural differentiation, which all point to the potential of 
the scaffold for brain repair and regeneration.

At the same time, 3D printing plays a huge role in 
disease treatment due to its unique and personalized 
structural customization. For instance, Dong et al.[81] 
prepared helical microcones of photocurable GelMA-
based hydrogels by two-photon polymerization (2PP). 
Following that, composite multiferroic nanoparticles 
were added to the helices. The microcones therefore 
displayed magnetoelectric characteristics (MENP) and 
became multifunctional soft helical microcones with 
high level of functional integration, capable of targeted 
delivery of nerve cells, on-demand local wireless neuronal 
electrical stimulation, and enzymatic digestion after 
delivery (Figure 2C). MENPs were incorporated into the 
microcones as part of a magnetic manipulation strategy, 
acting as magnetically actuated components in low-
amplitude rotating magnetic fields. The magnetic input, 
which was also transformed to electrical output by these 
MENPs, were used to induce neuronal cell differentiation 
under electrical stimulation. The microstructure provided 
a biocompatible matrix that supported the growth of cells 
and would degrade upon targeted neuronal cell delivery, 
which opens new avenue for targeted cell therapy for 
trauma and disease of central nervous system[81].

3D printing also offers significant advantages in drug 
delivery and release for NDD. Pramipexole is used to 
treat symptoms and signs of idiopathic PD in adults. The 
best working dose of pramipexole is patient-dependent. 
However, only a limited selection of standard doses is 
available in the market. Gultekin et al.[82] used fused 
deposition modeling (FDM) 3D printing to create dosage 
forms for pramipexole with varied release characteristics. 
The results showed that 3D-printed tablets could be 
successfully manufactured into personalized doses and 
that the desired drug release profile is achievable by 
adjusting the formulation (Figure 2D). Saylam et al.[83] 
proposed the use of 3D-printed polylactic acid (PLA) and 
chitosan (CS) neural tissue scaffolds loaded with levodopa 
for the treatment of PD and showed that levodopa was 

released from the 3D-printed scaffolds in a controlled 
fashion for 2 weeks with good biocompatibility. Systems for 
implanted drugs provide an alternative to treating chronic 
illnesses like neurodegenerative disorders. Renishaw used 
selective laser melting (SLM) to assemble a 3D-printed 
titanium catheter into an internal drug delivery device 
that delivered cerebral dopamine neurotrophic factor 
(CDNF) for the treatment of PD[84]. Preliminary results 
were encouraging, showing that the internal drug delivery 
device could be placed accurately with predictable efficacy. 
This 3D-printed drug delivery device contributed to 
improved efficacy and safety of CDNF, suggesting that 
future development of this technology would help alleviate 
the distress of PD patients suffering from progressive 
neurological disease.

3D printing also demonstrates important applications 
in assistive devices for aging care with neurological 
disorders. In response to the tremor or trembling 
symptoms of PD, Western University in Canada developed 
a 3D-printed wearable glove that suppressed tremors or 
other muscle contractions caused by PD, allowing PD 
patients to exhibit better motor control[85]. Parizi et al.[86] 
3D printed a smart ring called AuraRing, which tested the 
onset of PD by tracking silent hand tremors. Diseases such 
as ALS cause respiratory muscle weakness and require 
a noninvasive ventilator with bi-level positive airway 
pressure/continuous positive airway pressure (BiPAP/
CPAP). Wu et al.[87] used SLA technology combined with 
MRI data to customize patient-specific masks for BiPAP/
CPAP machines for muscle weakness caused by ALS, 
increasing patient comfort and reducing air leakage.

In general, the impact of aging on the nervous 
system increases with age, and the onset of NDD greatly 
affects the health and life of patients. 3D printing, with 
its unique advantages, plays an irreplaceable role in the 
fundamental study and treatment of aging-related NDD, 
from establishing more intuitive brain-like models for 
in-depth investigation of the pathogenesis of diseases, to 
targeted delivery and release of drugs through implantable 
biological scaffolds, as well as to the manufacturing of 
rehabilitation and assistive devices. Compared to traditional 
cell models, tissue sections, and organoids, 3D printing is 
able to print specific subtypes of neural cells and growth 
factors in region-specific arrangements to mimic natural 
tissue structures, which provides precisely choreographed 
reconstruction of microscale neural networks and 
connections with internal structures and physiological 
features of the nervous system in a more 3D and more 
life-like manner, and hence a complete developmental 
process of the nervous system. It also provides a method 
for healing complicated nerve injuries, opening the door 
to the specialized care of several nerve injuries. In addition, 
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3D printing enhances the reproducibility of experiments 
and facilitates high-throughput screening of drugs.

3.2. Musculoskeletal system
3.2.1. Osteoporosis
Osteoporosis is a common degenerative bone disease in the 
middle-aged and elderly population and is ranked as one 
of the top three geriatric diseases in the world by WHO[88]. 
Patients with osteoporosis often experience back pain as 
the main symptom and are clinically characterized by 
impaired bone microstructure[6,89]. Aging is one of the most 
critical factors closely associated with osteoporosis. With 
the gradual development of an aging society, the number 
of patients with osteoporosis has increased dramatically[90]. 
The condition is linked to the physiological decline of the 

organism and the imbalance of bone metabolism with 
age[91]. During bone metabolism in the body, changes in 
bone resorption occur, leading to a slow decrease in bone 
density, resulting in osteoporosis. Osteoporosis is most 
frequently observed in people of advanced age, which 
results in increased incidence of fractures in patients 
and has a significant impact on their physical and active 
functions[92].

3.2.2. Osteoarthritis
The advent of the aging population comes with many 
problems. Osteoarthritis (OA), which is closely related to 
age, is one of the most serious conditions. As a complicated 
chronic disease, OA is a leading contributor to mobility 
impairment in aged people. OA has long plagued a diverse 

Figure 2. (A) A brain-like structure made of 3D printing; the cells develop and differentiate in a certain layer, where each hue indicates a layer[13]. Reproduced 
with permission from Elsevier, Copyright © 2015, Elsevier. (B) 3D nMTC produced by printing with hNSC-loaded Al-CMC-Ag bioink using DIW. High 
expression of TUJ1 and low expression of SOX2 followed the induction of differentiation[79]. Reproduced with permission from John Wiley and Sons, 
Copyright © 2016, John Wiley and Sons. (C) Fabrication process and structural construction of 2PP-printed biodegradable soft spiral microswimmers[81]. 
Reproduced with permission from John Wiley and Sons, Copyright © 2020, John Wiley and Sons. (D) 3D printing-based personalized drug customization 
strategies[82]. Reproduced with permission from Elsevier, Copyright ©2022, Elsevier.
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group of people, and its incidence is closely related to aging 
and obesity, with the WHO reporting that about 1 in 10 
middle-aged and elderly people over the age of 60 suffer 
from OA. One of the most significant risk factors for OA is 
aging[92]. Studies have shown that the incidence of OA with 
imaging changes and painful symptoms increases with age. 
The lesions involve structural changes in articular cartilage, 
subchondral bone, synovial membrane, and periarticular 
muscles, mainly manifesting as bone friction, morning 
stiffness, joint motion disorders, and deformities in 
appearance, which all bring great pain and inconvenience 
to patients[93,94]. At the same time, OA also causes social 
burdens[95]. On the one hand, the disability caused by OA 
and its consequences lead to a reduction in the workforce; 
on the other hand, the treatment for OA is long-lasting 
and expensive, which imposes heavy financial burden to 
the healthcare system[96]. The main treatment principle for 
OA is to reduce symptoms and slow the progression of the 
disease, but eventually, more severe OA can only be treated 
with joint replacement[97,98].

At present, studies on the pathogenesis of OA suggest 
that it is mainly related to the imbalance in the metabolic 
homeostasis of cartilage, subchondral osteosclerosis, 
and synovial inflammation. Synovial is a special type of 
transparent tissue at the skeletal surface of the joint which 
facilitates the sliding of the joint surface and reduces 
friction during movement. One distinctive feature of 
OA is the loss of articular cartilage, which generally 
attribute to the imbalance between the anabolism and 
catabolism of chondrocytes. Aging, obesity, and changes in 
biological rhythms cause the hypertrophy or apoptosis of 
chondrocytes, metabolic disorders, and cellular senescence 
that disrupt cartilage homeostasis, thus triggering OA. 
Subchondral bone remodeling and bone redundancy 
formation are important features of OA. Meanwhile, 
increased subchondral bone angiogenesis and vascular 
invasion of avascular cartilage are early diagnostic features 
of OA[99]. Aging plays crucial roles in the development of 
OA. Chondrocyte loss and cartilage and joint damages 
occur during aging process, during which senescent 
cells accumulate in cartilage tissue and form senescence-
associated secretory phenotypes through the secretion of 
cytokines, and eventually lead to pathological changes in 
articular cartilage aging[100-103].

(A) The role of 3D printing in the treatment and 
research of bone diseases
Fractures and bone defects due to osteoporosis and tubular 
arthritis are usually treated with bone grafting, where the 
structures and functions of bones are reconstructed by 
customized grafts. Existing autograft and allograft methods 
have many problems, such as limited supply and dangerous 
complications. Bioactive materials with strong mechanical 

properties and biocompatibility are the best alternatives, 
but often do not integrate well into the recipient site due to 
the lack of a natural tissue-mimicking structure. Therefore, 
3D printing technology is used to produce bones that 
can more closely resemble their natural counterpart. The 
high degree of personalization and design freedom make 
3D printing well-suited for the manufacturing of bone 
grafts. The personalized and customized bioprostheses for 
transplantation becomes a better option to suit the needs 
of different patients.

The main materials used for bone tissue engineering 
include metals, ceramics, and biopolymers. Titanium-
based scaffolds are frequently utilized as implant materials 
for treating bone defects. However, the inefficient 
osseointegration of typical titanium-based implants is 
frequently observed, which is caused by the misaligned 
biomechanics and poor bioactivity of these implants. To 
address this issue, Ma et al.[104] used SLM to 3D-print a 
hybrid scaffold made of Ti-6Al-4V alloy and GelMA with 
dual bionic properties (GMPT) for bone defect repair. 
Because of the special dual bionic design, the synthetic 
GMPT scaffold replicated the microstructure and 
mechanical characteristics of natural cancellous bone and 
had superior osteogenic and angiogenic qualities compared 
to the porous TC4 metal scaffold. Ceramic materials have 
similar mechanical properties to bones and are used 
widely in bone tissue engineering. Wu et al.[105] developed 
a novel two-layer scaffold for bone repair using calcium-
deficient hydroxyapatite (CDHA) and poly(lactic-glycolic 
acid copolymer) (PLGA). An optimized mix of CDHA 
and PLGA with good biocompatibility and negligible 
cytotoxicity was 3D-printed by DIW to create a bilayer 
scaffold. Studies in animal models showed successful 
implantation of the scaffold and significant osteogenic 
ability within 6 months (Figure 3A and B). Van hede et al.[106]  
used SLA to 3D-print bioceramic-resin composite to 
fabricate a gyratory scaffold. The scaffold was implanted into 
rats, and a significant increase in bone volume within the 
scaffold was observed after 8 weeks, showing excellent bone 
regeneration properties (Figure  3C). Guillaume et al.[107]  
3D-printed polytrimethylene carbonate (PTMC)/
hydroxyapatite (HA) scaffolds by photo-crosslinking 
20 wt% HA nanoparticles with PTMC resin using SLA. 
In PTMC/HA scaffolds, the SLA process promoted the 
superficial enriching of HA, which significantly improved 
bone regeneration and promoted osteogenesis (Figure 3D). 
Zhang et al.[108] used digital light processing (DLP) to 
prepare large-sized (length >150 mm) HA bioceramics 
with highly microporous surface structure using urethane 
acrylate (UA) mixed with poly(ethylene glycol) diacrylate 
(PEGDA) and HA as a photosensitive composite. 
Experiments showed that the bioceramics have good 
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Figure 3. (A) Building the rabbit femur’s cortical defect model and implanting a 3D-printed scaffold. (B) Pictures of a rabbit femur taken after surgery at 
1, 3, and 6 months. Black arrows point to the bone defect area[105]. Reproduced with permission from IOP Publishing, Copyright © 2021, IOP Publishing. 
(C) Printing gyroid structures bone supports by SLA[106]. Reproduced with permission from John Wiley and Sons, Copyright © 2021, John Wiley and 
Sons. (D) Preparation of macroporous scaffolds for PTMC/HA by SLA[107]. Reproduced with permission from Elsevier, Copyright © 2017, Elsevier. 
(E) 3D-printed PCL networks enhance cECM-functionalized bioink hybrid constructs and cell viability of MSCs[117]. Reproduced with permission from 
John Wiley and Sons, Copyright © 2019, John Wiley and Sons. (F) Spatial structure and SEM images of 3D-printed PEGDA-GelMA-CSMA hydrogel 
scaffolds[118]. Reproduced under Creative Commons license.
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bone regeneration ability. CS is commonly used in bone 
tissue engineering, and the mechanical characteristics 
and biocompatibility of scaffolds can be considerably 
enhanced by doping CS with ceramic and metal particles. 
Using FDM technology, Ye et al.[109] 3D-printed chitosan 
acetic acid solution-coated poly(3-hydroxybutyrate-co-
3-hydroxyvalerate)/calcium sulfate hemihydrate (PHBV/
CaSH) scaffolds. Rat bone marrow stromal cells (rBMSCs) 
underwent osteogenic gene expression level upregulation 
by the PHBV/CaSH/CS scaffold, considerably increasing 
their osteogenic potential. Further proof that the PHBV/
CaSH/CS scaffold might successfully encourage the 
development of new bone came from in vivo investigations. 
Ratheesh et al.[110] prepared a double pore size layered 
scaffold using polycaprolactone (PCL) in combination 
with melt electrowriting (MEW) and FDM, and the layered 
scaffold showed improved performance with significantly 
larger specific surface area and enhanced cell proliferation, 
which promote cell adhesion and in vitro osteogenesis 
compared to the FDM control scaffold.

Poor osseointegration at the interface following 
arthroplasty in patients with osteoporosis caused by limited 
bone regeneration ability typically results in catastrophic 
consequences such as prosthesis displacement, loosening, 
and periprosthetic fractures. To improve osseointegration 
under osteoporosis, Wang et al.[111] 3D-printed a 
hierarchically functionalized porous Ti6Al4V scaffold 
using SLM. The macroporous structure in this innovative 
scaffold provided mechanical support, the microporous 
structure boosted biocompatibility and encouraged cell 
attachment, and the nanostructure showed biological 
impacts. Animal studies showed that a significant amount 
of new bone was produced around and within the distal 
femur of osteoporotic rats after the biofunctionalized porous 
Ti6Al4V scaffold was implanted. By inhibiting the Notch1 
signaling pathway and increasing the production of anti-
inflammatory cytokines, controlled release of epimedium 
and Mg2+ from biologically functionalized porous titanium 
(PT) significantly improved the polarization of M0 
macrophages to M2 type and significantly improved bone 
metabolism, which improved bone regeneration among 
PT and osteoporotic bone[111].

The fabrication of targeted drug delivery and release 
systems for patients with osteoporosis and OA through 
3D printing facilitates better recovery and maximizes the 
efficacy of drugs. Wang et al.[112] designed a thermosensitive 
hydrogel filled with osteoprotegerin (OPG) to suppress 
excessive osteoclast activity and bone morphogenetic 
protein-2 (BMP-2) to stimulate osteogenesis. To create 
a composite scaffold for implantation, the drug-loaded 
hydrogel was injected into a porous Ti6Al4V scaffold 
created by 3D printing. The BMP-2 and OPG released 

from the 3D-printed composite scaffolds sustained for 
more than 20 days, demonstrating good biocompatibility 
and encouraging osteogenic differentiation while reducing 
osteoclast activation. The repair of osteoporotic defects 
and osseointegration were greatly improved by sustained 
release of BMP-2 and OPG from the composite scaffolds. 
Cui et al.[113] created an inorganic-organic bioactive system 
for drug delivery. The system consisted of an electron beam 
melting (EBM) 3D-printed inorganic porous titanium alloy 
surface and an organic pozzolanic 407 thermosensitive 
hydrogel loaded with a new antiosteoporosis drug 
(technetium methylene diphosphate, 99Tc-MDP). It 
displayed a sustained drug release profile, improved 
osteogenic differentiation, decreased osteoclast-associated 
gene expression, and suppressed osteoclastogenesis. It also 
demonstrated superior biocompatibility[113]. Li et al.[114] 
used EBM to fabricate a 3D porous titanium prosthetic 
interface with biomimetic pore size and porosity, after 
which it was implanted into the distal femur of osteoporotic 
rabbits, and rapamycin was administered via a transdermal 
drug delivery system to the implantation site. Ultrasound-
mediated rapamycin administration restored cellular 
activity and prevented potential osteoclast induction and 
adipose differentiation.

(B) The role of 3D printing in the treatment and 
research of cartilage diseases
Arthroplasty is one of the best treatments for severe OA. The 
current gold-standard therapy for OA is total arthroplasty, 
in which the damaged cartilage and underlying bone 
are replaced with polymer and metal prostheses. This 
treatment is now approaching maturity, but still carries 
the risk of failure and postoperative complications. The 
advent of cartilage tissue engineering promises a new 
treatment option. New cartilage tissue engineering 
methods, such as 3D printing of bioinks that contain cells 
and bioactive materials, have the potential to produce 
prostheses with bionic structures and functions, and show 
great advantages for the development of personalized 
cartilage implant. It is particularly important to identify 
bioactive materials and printing strategies that are suitable 
for cartilage tissue engineering[115]. With the use of DIW, 
You et al.[116] effectively 3D-printed porous cell-loaded 
hydrogel scaffolds utilizing ATDC5 chondrocyte cells 
that were encapsulated with sodium alginate. The scaffold 
promoted chondrocyte proliferation, extracellular matrix 
(ECM) deposition, and cell survival (85% cell survival) 
in vitro, although it had a significantly lower compressive 
modulus (20–70 kPa) than human cartilage (700–800 kPa). 
Rathan et al.[117] developed a cartilage extracellular matrix 
(cECM)-functionalized alginate, which was infused into 
an FDM-printed PCL network to form a scaffold. The 
scaffold significantly enhanced chondrogenic potential 
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and promoted robust chondrogenesis from mesenchymal 
stem cells with its bionic structures that mimicked natural 
cartilage (Figure 3E). Guan et al.[118] prepared a novel bioink 
composed of PEGDA, GelMA, and chondroitin sulfate 
methacrylate (CSMA) to 3D-print scaffolds for cartilage 
tissue regeneration through the use of conventional FDM-
printed PLA porous scaffolds (Figure 3F). The bioink 
was infused into the 3D-printed PLA scaffold to form an 
interpenetrating polymer network with strong mechanical 
properties, good biocompatibility, reduced expression of 
osteogenic marker genes, enhanced expression of cartilage-
specific genes, and deposition of changes in vascular 
endothelial cells with increased glycosaminoglycan (GAG) 
levels.

Several studies have shown that the conjunction of 
electrospun fibers and hydrogels has an important impact on 
the enhancement of mechanical properties. Visser et al.[119]  
3D printed high-porosity PCL microfiber scaffolds that 
were mechanically reinforced with GelMA hydrogels 
using MEW and showed that the stiffness of the composite 
scaffold was increased compared to hydrogels or microfiber 
scaffolds alone (up to 54-fold), and the reinforced GelMA 
hydrogel had a stress–strain behavior similar to that of 
healthy articular cartilage. Furthermore, the rigidity of the 
biodegradable polymers was equivalent to that of articular 
cartilages in absolute terms, while the mRNA expression of 
matrix chondrocyte markers was significantly upregulated 
in the composite hydrogels. Chen et al.[120] processed 
cartilage decellularized matrix (CDM) into a powder 
form and mixed it with hyaluronic acid solution as an ink 
to prepare gelatin/PLGA fibers by DIW. The 3D-printed 
CDM-based scaffold’s stiffness and toughness were both 
increased by the incorporation of fibers. Additionally, 
the 3D CDM scaffold developed using electrostatically 
spun fiber reinforcement demonstrated good in vitro 
and in vivo biocompatibility and enhanced the repair of 
cartilage injury in rabbit joints. Bas et al.[121] used MEW to 
fabricate PCL melt electrospun fiber networks combined 
with star-shaped polyethylene glycol/heparin hydrogels 
(sPEG/Hep) to form hydrogels with mechanical properties 
similar to those of natural cartilage and to provide a proper 
microenvironment for in vitro chondrocyte culture and 
cartilage formation.

The application of 3D printing in bone focuses on bone 
grafting, orthopedic disease treatment, and drug delivery, 
and mainly uses metals, ceramic particles and biopolymers 
as materials. Desired structures are 3D-printed using 
techniques such as powder bed fusion, material extrusion, 
and vat photopolymerization. 3D printing in cartilage 
tissue engineering relies more on material extrusion. 
Biopolymer, hydrogels, and their composites filled with 
other functional materials are the commonly used bioinks 

in these applications. 3D-printed cartilage is expected to 
be the best alternative to cartilage tissue transplantation. 
In recent years, significant advancements in the field of 
bone and cartilage tissue engineering have been attained, 
but these achievements are still far from real-world clinical 
applications, likely because engineered tissues usually lack 
the kind of spatial complexity of real tissues. 3D printing 
has the unique advantage of controlling the volumetric 
geometry and internal structure of tissue scaffolds, allowing 
cells to be arranged according to predesigned patterns 
to meet the complexity required for tissue engineering. 
In clinical applications, 3D printing can create specific 
grafts according to the patient’s needs, reducing the time 
and postoperative risks in surgical transplantation. There 
has been significant advancement in the development of 
bioinks for the repair of bone and cartilage up to this point. 
These inks can facilitate cell proliferation, differentiation, 
and tissue creation, and they are highly printable and 
biocompatible. However, the real-world applications of 3D 
printing in bone and cartilage treatment remain a great 
challenge as there are many unresolved issues today, such 
as how to reproduce the regional complexity of natural 
tissues and how to ensure that a single graft can function 
properly in a complex bioenvironment. Nevertheless, we 
believe that 3D printing, with its unique advantages, will 
be able to solve these problems and be widely adopted 
in clinical practice to benefit the aging population with 
orthopedic diseases as research in this field progresses.

3.3. Cardiovascular system
Cardiovascular disease is the most common disorder 
among the elderly and one of the main causes of death for 
those over 65 years old[122]. The prevalence of cardiovascular 
disease is as high as 70% in people aged 60–79 years and 
rises to 80% in those aged >80 years[123-125].

3.3.1. Heart senescence
The ventricular structure alteration and diastolic 
dysfunction occur with aging. The significant effects 
of aging on cardiac structure are characterized as left 
ventricular myocardial hypertrophy and left atrial 
dilatation, which increase the incidence of heart failure 
and atrial fibrillation. Besides, other degenerative lesions 
of the aortic valve like aortic calcification, which usually 
contributes to aortic stenosis, increase with age, reaching 
up to 48% in those older than 84 years old[126]. During 
aging, cardiac cells undergo remodeling, mainly in the 
form of reduced number of ventricular myocytes and sinus 
node pacing cells, which leads to compensatory myocardial 
hypertrophy. Atrial myocardial fibrosis is closely related 
to the development of atrial fibrillation. In older adults, 
fibroblast proliferation and collagen deposition in atrial 
tissue adversely affect atrial electrophysiology and lower 



International Journal of Bioprinting Applications of 3D printing in aging

12Volume X Issue X (2023) https://doi.org/10.18063/ijb.732

the threshold for atrial arrhythmias. Many studies have 
shown that aging can directly or indirectly mediate 
calcium disorders and contribute to the development of 
cardiovascular disease[127]. Therefore, aging is marked 
by the degeneration of all systems, especially the heart, 
which causes molecular changes in cardiac structure and 
myocardial cell functions, and in turn leads to a series of 
cardiovascular diseases[128-131].

3.3.2. Vascular aging
Vascular aging refers to the degenerative alterations of 
vascular structure and function that occur with age and 
can be categorized into physiological vascular aging and 
pathological vascular aging[132,133]. The former is caused 
by programmed aging of the organism, and the latter is 
a pathological change caused by environmental factors, 
nutritional factors and diseases that cause accelerated 
aging of blood vessels. Vascular aging plays a decisive role 
in the aging process of human body, which is significantly 
correlated with the occurrence of cardiovascular diseases 
and other aging-related diseases in elderly people. Vascular 
aging at cellular level is characterized as morphological 
changes in vascular endothelial cells and vascular smooth 
muscle cells[134,135]. At the histological level, it is manifested 
as structural and functional changes in the vascular 
endothelium and middle layer, specifically, the amount 
of connective tissue, lipid, and calcium content of the 
subendothelium increases with age, the vascular smooth 
muscle layer thickens, elastin decreases, and vascular 
calcification occurs. Molecular studies demonstrated that 
the nitric oxide production and bioavailability significantly 
decreased during ageing, accompanied by reduced 
expression of endothelial-type nitric oxide synthase 
and its coenzyme tetrahydrobiopterin (BH4), inducing 
endothelial dysfunction and morphological and structural 
changes of vascular smooth muscle cells, and accelerating 
the onset of vascular aging. Telomeres are also involved 
in vascular aging[136]. Telomere shortening, damage, and 
decreased telomerase activity lead to senescence and 
dysfunction of endothelial cells and vascular smooth 
muscle cells, which in turn lead to vascular aging. Likewise, 
a series of pathological changes such as systemic and local 
inflammatory response, endothelial damage, oxidative 
stress, and mitochondrial dysfunction are underlying 
vascular pathology, which ultimately damage almost all 
organs and systems[129,135-138].

3.3.3. The role of 3D printing in the treatment and 
research of aging-related cardiovascular diseases
The progression of cardiovascular disease usually leads 
to structural and cellular deterioration of the heart. In 
the end stage of cardiovascular diseases, replacement of 
the damaged organ is often the only option to improve 

the prognosis of affected patients[139]. Current medical 
treatments usually require clinical implants including 
autografts, allografts, xenografts grafts, and artificial 
prostheses[140], such as the saphenous vein grafts and 
arterial grafts in coronary artery bypass grafting[18,141]. 
Cardiac implantation methods are mainly limited by 
donor shortage and immune rejection. In response to 
this problem, 3D-printed cardiac tissue engineering 
has emerged as a promising solution. The benefits of 3D 
printing include the ability to precisely regulate the spatial 
distribution and structural precision of many components, 
which makes it possible to successfully mimic the target 
tissue’s inherent structural characteristics, mechanical 
characteristics, and even functions. Also, 3D printing is 
often used by cardiovascular surgeons to create patient-
specific models to visualize anatomy, which promote a 
more comprehensive understanding of tissue and organ 
abnormalities to ensure surgical precision and provide an 
accurate model for teaching cardiovascular surgery. Ma 
et al.[18] produced complex ex vivo vascular models with 
internal microchannels for thrombosis studies by using 
DLP 3D printing (Figure 4A). Garekar et al.[142] 3D-printed 
heart models based on information from CT or MRI scans 
to gain a deeper understanding of intracardiac anatomy. 
With a combined use of dual-material material jetting 3D 
printing processes, computer-aided design tools, and CT 
with high spatial resolution, Maragiannis et al.[143] showed 
that severe degenerative aortic stenosis anatomical and 
functional characteristics might be faithfully replicated in 
patient-specific models. These models also made it easier 
to diagnose the patient’s condition (Figure 4B). There 
have also been major breakthroughs in the recreation 
of functional devices, such as tissue-engineered heart 
patches, which have shown great potential as a treatment 
option for myocardial infarction. Jang et al.[144] used DIW 
triple-jet co-printing technology to print two heart tissue-
derived dECM (hdECM)-based bioinks alternately on a 
PCL support layer and crosslinked them with UV light 
to fabricate 3D prevascularized stem cell patches. The 
spatial patterns of double stem cells used in the 3D-printed 
structures enhanced cell-to-cell communication and 
differentiation capacity while fostering the functions 
of tissue regeneration. This stem cell patches displayed 
improved cardiac performance, decreased myocardial 
hypertrophy and fibrosis, increased migration from 
the patch to the infarct zone, which led to new muscle 
and capillary creation as well as robust angiogenesis 
and tissue matrix production. Noor et al.[145] used DIW-
printed personalized hydrogel bioinks to construct thick, 
vascular, and perfusable cardiac patches that precisely 
matched the patient’s immunological, biochemical, and 
anatomical features when mixed with the patient’s own 
cells (Figure 4C). Vascular and cardiac scaffolds are one of 
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the urgently needed structures for cardiovascular diseases. 
Wu et al.[146] 3D-printed vascular scaffolds with DIW by 
using gelatin–alginate–montmorillonite nanocomposite 
bioinks. The inner and outer surfaces of the vascular 
scaffold displayed networked microporous structures with 

tensile strength and elastic modulus comparable to those of 
native arteries. The scaffold aided in the supply of nutrients 
and cellular infiltration. The hemolysis rate of the scaffold 
also fulfilled the benchmark for vascular replacement, 
and the scaffold’s rupture pressure was similar to that of 

Figure 4. (A) Multiangle photographs of 3D-printed structures of three different types of vascular constructs[18]. Reproduced with permission from 
IOP Publishing, Copyright © 2022, IOP Publishing. (B) 3D-printed model of the patient (top). Calcification of the aortic valve leaflet (red arrow)[143]. 
Reproduced with permission from Wolters Kluwer Health, Copyright © 2015, Wolters Kluwer Health. (C) 3D printing of a personalized heart patch. 
From left to right: a 3D model of the heart patch, printing method, and heart patch with printed blood vessels[145]. Reproduced under Creative Commons 
license. (D) 3D-printed collagen heart[149]. Reproduced with permission from The American Association for the Advancement of Science, Copyright 
© 2022, AAAS.
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physiological pressure of normal blood vessel. Lee et al.[147] 
3D-printed biodegradable PLA stents using polymer 
electrolyte membrane (PEM), and used polydopamine 
(PDA), polyethyleneimine (PEI), and heparin (Hep) 
to prevent restenosis and thrombosis by improving 
anticoagulation and hemocompatibility. Alonzo et al.[148] 
3D-printed annular hydrogel (gelatin-alginate) scaffolds 
with microvascular endothelial cells using DIW. These 
3D heart-like scaffolds supported long-term cell survival, 
function, and maintenance of cell phenotype throughout 
the entire culture period because they were structurally 
and mechanically stable with highly interconnected pores. 
The model supported paracrine signaling in addition to 
heterogeneous cellular contact between endothelial cells 
and cardiac fibroblasts, cardiomyocytes, and both[148]. Jia 
et al.[19] used a multilayer coaxial extrusion technique to 
3D-print a cell-responsive bioink made of GelMA, sodium 
alginate, and 4-arm poly(ethylene glycol)-tetraacrylate 
(PEGTA) to enable direct 3D bioprinting for one-step 
production of perfusable vascular systems with highly 
organized structures. This hybrid bioink encapsulated 
stem cell and endothelium in bioprinted structures and 
supported their growth, producing biologically relevant, 
highly structured, and perfusable vasculature. Lee et al.[149]  
proposed free-form reversible encapsulation with 
suspended hydrogels (FRESH) to directly write collagen 
into bioconstructs of various scales, ranging from 
capillaries to whole organs. At 20-µm filament resolution, 
porous microstructures were capable of cellular infiltration 
and microvascularization. The mechanical strength 
adequate for the production and perfusion of multi-scale 
vascular systems and trilobular valves were enabled via 
pH-driven gelation control. The results showed that the 
3D-bioprinted heart accurately reproduced the patient-
specific anatomy determined by micro-CT (Figure 4D). 
Human cardiomyocyte imprinting resulted in coordinated 
contraction, directed action potential propagation, and 
wall thickening of up to 14% at peak contraction in the 
ventricular tissues.

The application of 3D printing in cardiovascular diseases 
mainly involves cardiovascular phantoms fabricated by 
material jetting, cardiovascular stents fabricated by material 
extrusion, and heart patches for treatment fabricated by 
material extrusion. Materials for bioink mainly include 
biopolymers such as GelMA and ECM. Live and functional 
cells are frequently encapsulated and printed together 
with the biopolymers to simulate certain functions of the 
cardiovascular system in vitro. However, 3D printing of the 
entire organ remains difficult. Cardiovascular system is a 
complex anatomical structure. Therefore, to replicate its 
internal structure and reproduce its function is the greatest 
challenge in the research and treatment of cardiovascular 

diseases. Cardiovascular structure restoration is made 
possible by the careful sorting and placement of cells or 
tissue blocks in a complex 3D microenvironment with 
bioprinting technology. Although bioprinting techniques, 
bioink materials, and post-bioprinting processing are still 
in their infancy in this area, reproducing heart structures 
including the myocardium, blood arteries, and heart valves 
via 3D bioprinting has shown great promises. New bioinks 
and printers with the ability to manufacture objects with 
high resolution will advance the science and eventually 
accomplish the ultimate goal of total organ engineering.

3.4. Digestive system

3.4.1. Application of 3D printing in oral cavity 
diseases
The tooth loss among the elderly people is mostly caused 
by periodontal and dental caries. While the gums are aging 
and shrinking, the exposed area of the cervical root is 
increased, thereby elevating the risk for caries[150]. Aging also 
causes severe resorption of alveolar bone, in which case, the 
supporting structure of teeth is destroyed, causing instability 
in teeth. Long-term caries and periodontal diseases activate 
the oxidative damage by free radicals and weaken the 
repairing ability of the oral cavity, causing tooth loss in the 
elderly. In summary, tooth loss in the elderly is a systemic 
process caused by many factors associated with aging[151-154].

Tooth loss adversely affects the life quality and brings 
great harm to the elderly both physically and mentally. 
Dental regeneration faces a significant difficulty in 
replicating the structural complexity and multicellular 
interactions that resemble their natural 3D counterpart. 
Due to improvements in 3D printing technology, which 
enables the creation of structures with patient-specific 
characteristics, efforts to construct teeth and dental support 
devices, such as periodontal ligament, alveolar bone, and 
dental ossicles, have made some progress[155,156]. Although 
some dental applications of 3D printing are not targeted at 
the aging population, we focus on the potential applications 
of these cases in the elderly population, such as 3D-printed 
crowns and dental implant scaffolds for dental implants in the 
elderly. It is becoming more apparent that a single material 
is difficult to meet all the requirements; therefore, the search 
for more suitable hybrid materials has also become one of the 
focuses of tissue engineering development[157]. Jeong et al.[158] 
used PEM to 3D-print PCL mixed with HA/β-tricalcium 
phosphate (β-TCP) into novel scaffolds. It combined bone 
grafting and implant fixation devices to simplify alveolar 
bone regeneration and dental implant procedures. The 
new scaffold had high porosity and good microstructural 
interoperability. Cell proliferation and alkaline phosphatase 
assay results were significantly better than those of control 
scaffolds. The emergence of new hybrid materials is often 
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accompanied by technological updates. Zhao et al.[159] used 
DIW to produce high-precision crowns using multiscale 
and highly ordered HA frameworks. The smooth printing of 
“supergravity+” HA nanorod-enhanced hybrid resin-based 
composites was made possible by designing a nozzle with 
channels that gradually shrank in response to shear-induced 

forces. The bending and compression resistance of the 
crowned structure was superior to the corresponding values 
of conventional specimens made by molding (Figure 5A). 
Mai et al.[160] used PolyJet 3D printing to fabricate 
temporary crowns with photosensitive resin and showed 
that the crowns had better fit and higher marginal accuracy 

Figure 5. (A) 3D-printed canine incisor and molar crown structures. Cyan, rose red, and indigo represent the crowns of canines, incisors, and molars, 
respectively[159]. Reproduced under Creative Commons license. (B) 3D printing of dental crown models using photopolymer jetting[160]. Reproduced with 
permission from Elsevier, Copyright © 2017, Elsevier. (C) SLA-manufactured alumina dental crown[163]. Reproduced with permission from Elsevier, 
Copyright © 2017, Elsevier. (D) 3D printing of complete dentures using SLA[164]. Reproduced with permission from Elsevier, Copyright © 2023, Elsevier. 
(E) Image of 3D-printed design combination of peas, carrots and corn suitable for swallowing disorder diet[170]. Reproduced with permission from 
Elsevier, Copyright © 2021, Elsevier. (F) Sample chart suitable for swallowing disorder diet[168]. (G) 3D printing strategy based on mushroom powder[168]. 
Reproduced under Creative Commons license.
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compared to compression molding and milling techniques 
(Figure 5B). This result indicated that the technique had a 
huge potential in endodontic and whole tooth regeneration. 
Park et al.[161] used computational topological design and 
material injection techniques to 3D-print hybrid human 
dentin–ligament–bone complexes in vivo using PCL and 
polyglycolic acid (PGA) as inks. The newly formed tissues 
were grown in the PCL–PGA constructs to form dental 
osteoid-like tissues, ligaments, and bone structures.

The most popular 3D printing method used in dentistry is 
vat photopolymerization[162]. Dehurtevent et al.[163] used SLA 
technology and alumina ceramics as raw materials to create 
a compact 3D crown with controllable shape (Figure 5C).  
At the same time, many older people are suffering from 
severe tooth loss due to osteoporosis or oral diseases, which 
greatly affects their normal life. 3D-printed full dentures 
provide a new solution to improve the living conditions of 
the elderly. Deng et al.[164] 3D-printed complete dentures 
with the help of SLA technology combined with traditional 
process to manufacture final dentures with tooth position 
accuracy within 150 µm and high production efficiency; 
therefore, the use of SLA combined with traditional 
process to manufacture complete dentures is feasible and 
has significant clinical application (Figure 5D).

Traditional processes of making implants are time-
consuming and have the problem of poor fit, but 3D 
printing effectively reduces the dental surgery time and 
pain of patients by personalizing the implants according to 
the characteristics of the patient’s lesion. The application of 
3D printing in the field of dentistry is becoming more and 
more comprehensive. Deficiencies that exist at this stage, 
such as how to make a better combination of mechanical 
strength and biocompatibility of the denture, are expected 
to be solved with the continuous innovation of 3D printing 
technology and materials.

3.4.2. Application of 3D printing in swallowing 
disorders
The population with swallowing disorders is rapidly 
increasing with age. Dysphagia is a common disorder 
affecting approximately 14% of the population over the 
age of 50 years and up to 40%–50% of residents of senior 
care facilities[165]. Delayed movement of food mass during 
swallowing is the characteristic symptom of dysphagia. 
Oropharyngeal dysphagia causes patients to cough and 
choke, and food residues to remain in the mouth[166]. 
Due to the loss of appetite, all these disorders may cause 
malnutrition, dehydration, and weight loss. In extreme 
cases, choking may lead to lung infection or even death. 
To solve these problems, food must be soft enough to chew 
and safe to swallow. Therefore, it is crucial to develop safe, 
nutritious and, more importantly, visually appealing diets 

for this group of people. 3D food printing is capable of 
creating visually appealing and personalized nutritious 
foods that are suitable for the dysphagia patients[167]. Liu 
et al.[168] produced nutritious foods with attractive shapes 
that are compatible with dysphagia people by DIW 3D 
printing mushroom powder containing hydrocolloids such 
as xanthan gum (XG) and carrageenan (Figure 5F and G). 
Most of current 3D food printing studies use processed 
food powders for DIW 3D printing[169]. However, freeze-
dried foods usually lead to loss of nutrients. In contrast, 
Pant et al.[170] 3D-printed fresh vegetables and fruits for 
dysphagia patients using DIW. These nutritious food inks 
were prepared in different ways according to the starch, 
fiber, and water content of the food, which maintained 
the flavor and nutrition of real foods while ensuring 
good printability (Figure 5E). Zhang et al.[171] used DIW 
to 3D-print alternative proteins, including plant, animal, 
insect, and algae proteins, for dysphagia patients. A response 
surface approach was used to optimize multicomponent 
protein inks to produce protein-based snacks. Lee et al.[172] 
enhanced the printability and stability of food foam with 
the help of XG. The food foam was 3D-printed into various 
shapes to enhance the attractiveness and palatability of 
food. The 3D-printed food foams were created to facilitate 
the hydration of patients with swallowing disorders 
due to the high water content in the ink. Dick et al.[173] 
improved the texture of 3D-printed pork paste by adding 
hydrocolloids and postprocessing the food by freezing 
and heating. These 3D-printed food meet international 
standards for dysphagia diets, and hence is suitable for 
people with chewing and swallowing difficulties. The cases 
cited in this review are shown in Table 2.

4. Conclusion and future outlook
In summary, 3D printing has become a viable tool for 
the fundamental research of aging and aging care. Huge 
breakthroughs have been made in the area of 3D-printed 
aging disease models, implants, drug delivery systems, 
dysphagia diets, and auxiliary devices for the investigation 
and treatment of various conditions associated with aging 
in recent years. However, there are still many problems. 
Traditional cellular and animal disease models have also 
been explored with more mature solutions. The human 
body is more complex, and it is difficult to fully replicate the 
real situation of human diseases with traditional models. 
With this, 3D bioprinting opens up new opportunities to 
create models that fully replicate human diseases. However, 
the exploration of 3D-printed disease models is still largely 
limited to simple in vitro models containing only a single cell 
type. How to 3D-print a disease model that simulates the 
physiological characteristics and functions of the real tissue 
or organ remains a daunting challenge. The research on 
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new bioink and scaffold is comprehensive and has made big 
breakthroughs. However, to identify and create materials with 
physiochemical and physiological properties that are close 
to the human tissues and meanwhile have good printability 
still require extensive investigations. Personalized food for 
the aging population is an outstanding idea empowered by 
3D printing, but the relatively high cost and low production 
throughput have limited the adoption of this technology 
in most healthcare settings. 3D-printed drugs and drug 
delivery systems have gone beyond what can be expected 
from traditional medications. It makes personalized dosage 
and dosage form a viable option in clinical practice, which 
could not only reduce the damages caused by the generic 
formulation but also increase drug efficacy for each individual 
patient. Nevertheless, price, ethics, regulatory matters, and 
other medical and nonmedical factors are still big hurdles 
that prevent 3D drug printing from being adopted in real-
world applications. 3D printing still has a long way to go 
before becoming the go-to technology for aging research 
and aging care. In our humble opinion, future development 
in this area should be application-specific and goal-oriented, 
which means materials, printing platforms, and fabrication 
process should be developed specifically for each particular 
application. The highest priority is to develop materials for 
bioinks that match the physiological characteristics and 
mechanical properties of human tissue and organs, so that 
more accurate disease models and transplantable organs 
could be entirely 3D-printed. From another point of view, 
although 3D printing has been widely used in the medical 
field, its applications in the field of rehabilitation medicine 
have just emerged in recent years. Rehabilitation is one 
of the important fields of aging research. The use of 3D 
printing to develop therapeutic and assistive devices, such as 
hearing aid, limb aid, and disease onset monitoring device, 
to treat aging-related diseases and restore the activity of 
daily life of the elderly people is a top priority. 3D printing 
creates devices that are more convenient, more tailored to 
the individual, and can perform more functions in a limited 
space. Future innovation in 3D printing technology should 
also take fabrication cost and throughput into consideration. 
Although 3D printing still faces many challenges, we have 
reasons to believe that it will 1 day become the mainstream 
technology for addressing aging-related and other medical 
issues. So far, 3D bioprinting has already made major 
breakthroughs in nerve regeneration, heart transplantation, 
bone and cartilage regeneration, and geriatric care. It has 
helped us gain a deep understanding of geriatric diseases 
and brought hopes for new treatment and rehabilitation 
regimes for aging-associated conditions. Despite many 
challenges, 3D printing has great prospects of benefiting 
a broader aging population by empowering personalized 
aging care, thereby promoting active and confident aging, 
and improving quality of life of elderly people.
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