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Abstract
Lung tissue engineering (LTE) has gained significant attention as a highly promising 
and innovative strategy to tackle the formidable obstacles posed by lung-related 
diseases and the lack of compatible donor organs availability. In the realm of 
groundbreaking advancements in tissue engineering (TE), one particular technology 
that has emerged as a game-changer is three-dimensional (3D) bioprinting. It 
distinguishes itself by offering a potent and versatile approach to constructing 
intricate structures while opening up new horizons for TE and regenerative medicine 
(RM). This review focuses on the application of multiscale 3D bioprinting techniques 
in LTE and the reconstitution of lung tissue in vitro. We analyzed the key aspects 
such as bioink formulations and printing strategies utilized from macroscale 3D 
bioprinting to micro/nanoscale 3D bioprinting. Additionally, we evaluated the 
potential of multiscale bioprinting to replicate the complex architecture of the 
lung, ranging from macrostructures to micro/nanoscale features. We discussed the 
challenges and future directions in biofabrication approaches for LTE. Furthermore, 
we highlight the current progress and future perspectives in tissue reconstitution of 
lung in vitro, considering factors such as cell source, functionalization, and integration 
of physiological cues. Overall, multiscale 3D bioprinting offers exciting possibilities 
for the development of functional lung tissues, enabling disease modeling, new 
drug screening, and personalized regenerative therapies.

Keywords: Multiscale 3D bioprinting; Lung tissue engineering; Biofabrication; Tis-
sue reconstitution in vitro

1. Introduction
Lung tissue engineering (LTE) represents a dynamically progressing domain, with 
continuous research endeavors directed toward surmounting the obstacles linked to the 
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expansion of functional lung tissue production, enhancing 
vascularization approaches, and ensuring sustained 
long-term functionality[1,2]. Conditions such as chronic 
obstructive pulmonary disease (COPD), pulmonary 
fibrosis, and lung cancer pose significant challenges to 
global health, severely impacting patients’ quality of life 
and overall prognosis[3,4]. LTE is of paramount importance 
in the context of lung diseases, as it holds great potential 
for revolutionizing innovative strategies to replace or 
repair damaged lung tissue by leveraging the principles of 
biology, materials science, and engineering[5]. The ultimate 
goal is to provide effective treatments and potential cures 
for regenerative medicine (RM), offering new possibilities 
for patients requiring respiratory interventions. Especially, 
LTE combined with three-dimensional (3D) bioprinting 
holds great promise for advancing our understanding of 
lung diseases, developing new therapies, and potentially 
providing transplantable lung tissue in the future.

Bioprinting, as defined by the American Society for 
Testing Materials (ASTM), is a specific method used 
to 3D-print biomaterials into various structures. 3D 
bioprinting is a specific technique used within the broader 
field of tissue engineering (TE), to precisely deposit 
cells, biomaterials, and growth factors in a 3D manner 
to create complex structures[6,7]. The common strategies 
of 3D bioprinting include inkjet-based bioprinting, 
extrusion-based bioprinting, and laser-assisted (e.g., 
stereolithography) bioprinting (Figure 1)[8]. Over the past 
few decades, the field of 3D bioprinting has experienced 
significant advancements in terms of the types of tissue 
models that can be constructed, including cancer[9], blood 
vessels[10,11], heart[12], and lungs[13,14]. Indeed, 3D bioprinting 
has the potential to offer various benefits and applications 
beyond just lung transplantation. 3D bioprinting allows 
the creation of patient-specific tissues and organs, tailored 
to individual needs. Additionally, researchers can create 
disease-specific models using bioprinting, allowing 
them to study the effects of drugs on specific tissues or 
organs without endangering patients[9,15,16]. Although this 
technology is still in its early stages, researchers have made 
progress in generating small, simplified organs like liver 
patches, kidney tissues, and more[17]. Therefore, the ability of 
3D bioplotting to recreate the lung tissue allows researchers 
to investigate disease progression, cellular interactions, 
and responses to different drugs or treatments[18]. 3D 
bioprinting has emerged as a transformative tool that 
enables the creation of intricate 3D structures across 
different scales, ranging from macroscale to microscale 
and even nanoscale. 

Considering the complex structure and dynamic 
characteristics of lung, researchers have made various 
summaries[19,20]. 3D bioprinting enables the construction 

of artificial lung tissues or lung organs at the macroscale, 
precise tissue compositions at the microscale, and even cell 
and molecular compositions at the nanoscale. Although 
extensive work has been done on the 3D bioprinting 
for LTE, there, to the best of our knowledge, appears no 
review paper in this field. In this review, we present a 
comprehensive overview of the principles and recent 
advancements in 3D bioprinting for LTE. We proceed 
to explore crucial elements such as the composition 
of bioink and the printing methodologies employed, 
and explore the potential of multiscale bioprinting to 
faithfully reproduce the intricate architecture of the lung, 
ranging from macrostructures to nanoscale features. 
Furthermore, we emphasized the current progress and 
future perspectives in the in vitro reconstitution of lung 
tissue, covering crucial considerations like cell sourcing, 
functionalization, and integration of physiological cues. 
With these groundbreaking techniques, a new era is 
dawning in the realm of lung tissue development, opening 
doors to functional and biologically accurate constructs. 
This remarkable progress promises to revolutionize disease 
modeling, drug screening, and RM for lung conditions.

2. Material inks for lung tissue fabrication
As the native extracellular matrix (ECM) can offer 
structural support to tissues, it is important to find an 
engineered ECM that can serve the same purpose. Material 
inks play a crucial role in TE as they provide scaffolds for 
cell growth and differentiation, facilitating the formation 
of functional tissues[21]. In the context of lung fabrication, 
several biomaterials are being explored for creating lung 
tissue in vitro. For example, hydrogels (including alginate, 
collagen, gelatin, and fibrin) are water-based materials 
that can mimic pulmonary ECM[18]. They provide a 3D 
environment for cells to grow and can be engineered to 
have specific mechanical properties and biochemical 
cues. Additionally, biocompatible and biodegradable 
synthetic polymers like poly(lactic-co-glycolic acid) 
(PLGA), polycaprolactone (PCL), and polyethylene glycol 
(PEG) are commonly used in 3D printing or melded into 
the scaffolds. In addition, decellularized ECM (dECM) 
encompasses the characteristics of an ideal tissue scaffold: 
complex composition, vascular networks, and unique 
tissue-specific architecture[22,23]. Therefore, dECM has 
emerged as a potential biomaterial ink with tissue-specific 
composition for LTE[24]. During the fabrication process, 
microcarrier inks, which are small, spherical particles, 
play a role in carrying and protecting cells. Furthermore, 
the incorporation of nanofibers and nanoparticles can 
enhance the mechanical properties and surface area 
of the nanoscale lung scaffolds. To achieve lung-like 
structures with appropriate architecture and functionality, 
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a combination of these biomaterials with advanced 3D 
bioprinting techniques proves highly promising.

3. Macroscale 3D bioprinting
3.1. Macroscale 3D bioprinting techniques 
Macrobioprinting application addresses the medical 
requirements to develop transplantable tissue structures 
that meet feasible anatomical dimensions on a 
macroscale[25]. Macroscale 3D bioprinting focuses on 
creating larger and more complex tissue constructs (e.g., 
artificial trachea) that closely resemble natural tissues 
in terms of their macroscopic features[26]. Macroscale 
bioprinting materials and strategies have shown significant 
progress in TE, encompassing the overall shape, structure, 
and volume of printed biological tissues[27]. Macroscale 3D 
bioprinting involves the use of larger bioink formulations 
and printing strategies to create 3D structures[28]. These 
bioink materials need to possess biocompatibility, 
biodegradability, bioabsorbability, and printability. 
The bioink also incorporates biomaterials, which act 
as a support structure and provide cues for cell growth 
and tissue formation. Commonly used biomaterials in 
macroscale bioprinting include hydrogels (e.g., alginate, 
gelatin, or collagen) or synthetic polymers[29]. In addition to 
biomaterials, macroscale bioprinting allows for the printing 
of various cell types, including stem cells, differentiated 
cells, or a combination of multiple cell types[30]. Macroscale 
bioprinting employs different strategies to deposit bioink 
and build 3D structures. The most common methods 
include extrusion-based bioprinting, where bioink is 

extruded through a nozzle or a syringe, lithography 
bioprinting, and inkjet-based bioprinting, where small 
droplets of bioink are deposited layer by layer. To achieve 
the desired tissue morphology (especially the complex 
respiratory system) in macroscale bioprinting, various 
factors need to be considered, including the biomaterial 
inks, the design of printing patterns, and the optimization 
of printing parameters. 

Macroscale 3D bioprinting for lung tissue involves 
the fabrication of larger-scale structures that mimic the 
architecture and functionality of native lung tissue[31]. 
By accurately depositing material inks and creating 
appropriate scaffolds, researchers can recreate the 
structural organization necessary for proper lung function 
(Figure 2A). The construction of macroscale lung tissue 
can be deposited layer by layer using techniques like 
3D bioprinting or assembled into larger structures 
to mimic the desired lung tissue architecture[32]. This 
technology facilitates precise deposition of biomaterials, 
such as hydrogels, in a controlled manner, enabling the 
construction of intricate structures that mimic the native 
macroscale tissues[33]. Macroscale 3D bioprinting for 
lung tissue holds promise for various applications and 
potentially transplantation in the future.

3.2. Macroscale 3D bioprinting for lung tissue 
recapitulation and application
3D spheroid bioprinting technology has the potential 
to create human lung tissues on a macroscale, utilizing 
biomaterial scaffolds, which can include the intricate 

Figure 1. Types of 3D bioprinting, including inkjet-based bioprinting, extrusion-based bioprinting, laser-assisted bioprinting, and other emerging 
technologies. Created with BioRender (www.biorender.com).
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network of artificial trachea, blood vessels, and alveoli. 
Researchers designed and developed a tissue-specific 
photo-crosslinked bioink, and applied 3D bioprinting 
technology to construct a bionic trachea with alternate 
cartilage-vascularized fibrous tissue (Figure 2B)[34]. 
Multiscale vascularization remains a critical challenge 
in LTE. In order to study the lung tissue with natural 
morphological structure, scientists attempted to 
incorporate the structural attributes of the natural distal 
lung into a bioinspired model that mimicked the alveolar 
morphology and facilitated oxygen transport[35]. They 
used a hydrogel that can support mechanical stretching 
during the process of collecting air in the small airways’ 
circulation, and the size of the 3D lung model printed is 
like a coin. Furthermore, researchers successfully prepared 
a human alveolar lung model in vitro through macroscale 

3D bioprinting[36]. This lung model has collagen matrix, 
alveolar lung epithelium, endothelium, and fibroblasts, 
and maintains high cell vitality, proliferation, and viability 
in this printed structure. Moreover, to reproduce the 3D 
pulmonary cyst-like architecture, particularly alveoli 
epithelial side, researchers have successfully generated 
epithelial cysts utilizing the macroscale 3D bioprinting[37]. 
By incorporating epithelial cysts as a cellular component 
within material inks, it becomes feasible to hierarchically 
structure them through bioprinting, ultimately leading to 
the creation of constructs that closely resemble alveoli.

The trachea-like engineered lung tissues can serve as 
models for studying lung diseases like tracheal stenosis[38]. 
In addition, through the incorporation of advanced 
imaging techniques, computer-aided design models, and 

Figure 2. Macroscale 3D bioprinting for lung tissue. (A) Schematic diagram of pulmonary macroscale structure. Created with BioRender (www.biorender.
com). (B) Schematic illustration of the designs of cartilage tissue‐specific and vascularized fibrous tissue‐specific bioinks and the 3D‐bioprinted CVFIT for 
trachea regeneration in nude mice and in situ trachea reconstruction of rabbits[34]. Reprinted (and adapted) with permission from John Wiley and Sons. 
Copyright © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. Abbreviations: CVFIT, cartilage‐vascularized fibrous tissue‐integrated 
trachea; p‐CB, photo-crosslinkable cartilage‐specific bioink; p‐VFB: photo-crosslinkable-vascularized fibrous tissue‐specific bioink. 
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precise robotic control systems, macroscale bioprinting 
facilitates the fabrication of scaffold-free isogenic artificial 
tracheas, which can be utilized as tracheal grafts in rats[39]. 
Researchers have demonstrated the transplantation of a 
macroscale 3D-printed trachea that mimics the natural 
trachea into a rabbit model to enhance the regeneration 
of tracheal mucosa and cartilage[40]. In another study, 
a macroscopic structure composed of lung epithelial 
cells printed on the basis of primary lung fibroblasts and 
monocyte cells was used to reconstruct alveolar model 
(about 7 mm long) in vitro to detect influenza virus 
infection[41]. These constructs can be used to study lung 
development, investigate disease mechanisms, and develop 
new therapies.

4. Microscale 3D bioprinting
4.1. Microscale 3D bioprinting techniques 
Research on microscale systems to reconstruct local 
microenvironmental cues and microscale characteristics is 
also worthy of attention for realizing pulmonary structure 
functions in vitro[42]. Within the living organism, cells 
reside in a complex microenvironment consisting of 
diverse biophysical and biochemical cues[43,44]. Microscale 
bioprinting refers to the fabrication of structures at a 
smaller scale, typically in the range of micrometers[45,46]. 
Microscale 3D bioprinting constructs aim to replicate 
the complex biochemical and biophysical processes that 
occur within and between cells in living tissues[47,48]. This 
approach offers several advantages, including enhanced 
precision, increased resolution, and improved control 
over cell placement, which are crucial for mimicking the 
natural cellular composition and organization found in 
native tissues and organs[49,50]. Commonly used strategies 
are laser-assisted bioprinting and inkjet-based bioprinting. 
Laser-assisted bioprinting realizes the printing of 
photosensitive bioink by using plane projection, while 
inkjet-based bioprinting uses a piezoelectric printhead 
to deposit droplets of bioink onto a substrate. Such 
strategies enable us to create complex microscale tissue 
structures. In microscale bioprinting, bioinks must possess 
specific properties, such as shear-thinning behavior (to 
enable extrusion), biocompatibility, and appropriate 
rheological properties (to simulate lung stretching) for 
precise printing. The bioprinted cells can interact with the 
surrounding ECM or biomaterials[51,52]. By controlling the 
printing parameters and the composition of the bioink, 
researchers can achieve desired mechanical properties, cell 
densities, and functionalities within the printed microscale 
constructs[53,54]. For example, hydrogels made from human 
lung dECM can resemble the biophysical traits of native 
lung tissue[55]. 

Micro lung structure refers to the detailed anatomical 
components and organization of the lung at the microscopic 
level. It involves the study and understanding of the intricate 
structures within the lung tissue, such as the alveoli, 
bronchioles, capillaries, and various types of cells[56]. The 
small airways also play a crucial role in the microstructure 
of the lung and distribute air to the alveoli and help regulate 
airflow within the lungs. The alveoli are surrounded by a 
network of capillaries, allowing for efficient exchange of 
air between the alveoli and the blood (Figure 3A). In the 
blood–gas barrier, the proximity between an alveolus and a 
capillary is approximately 0.5 μm, facilitating gas exchange 
through the process of diffusion[57]. Continued research 
and advancements in microscale bioprinting hold huge 
promise for the advancements of functional lung tissues as 
well as lung tissue recapitulation and application in future. 

4.2. Microscale 3D bioprinting for lung tissue 
recapitulation and application
Microscale bioprinting materials and strategies offer 
precise control over the fabrication of lung tissue constructs 
at a smaller scale, which enable the creation of intricate 
structures, mimic the native lung microenvironment, and 
promote cell viability and functionality[58,59]. Using 3D 
bioprinter with a printing resolution in the micrometer 
range, researchers printed a complex engineering microscale 
3D air–blood tissue barrier for safety assessment and drug 
efficacy testing (Figure 3B)[60]. This development is expected 
to pave the way for high-throughput drug screening in 
vitro. Due to the impossibility of a single material ink to 
establish a “synthetic” microenvironment that accurately 
simulates the in vivo conditions, there has been a growing 
emphasis on multimaterial bioprinting[61]. Researchers 
developed a groundbreaking material ink by combining 
alginate with dECM, showcasing its remarkable ability to 
maintain biological activity during the entire process of 
3D-bioprinting intricate and mechanically resilient tissues, 
both during and after printing (Figure 3C)[62]. Through 
their research, it was discovered that the enhanced bioink, 
enriched with lung dECM, exhibited remarkable potential 
for 3D bioprinting of subsegmental human bronchus. This 
bioink consisted of primary human lung smooth muscle 
cells and primary airway epithelial progenitor cells, which 
possessed the capacity to differentiate into diverse cell 
types typically found in the airway.

The progress of microscale 3D bioprinting has 
significantly advanced the simulation of lung diseases in vitro. 
In a recent and influential study, scientists made a significant 
breakthrough by 3D bioprinting, which has proven to be a 
valuable model for investigating influenza infection within 
the lung[63]. Additionally, studies have demonstrated the 
feasibility of bioprinting microscale lung using acellular 
porcine lung hydrogel without external crosslinking, using 
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microscale 3D bioprinting technology[64]. For instance, 
a thrombosis chip was constructed, offering insights into 
effective treatment strategies for pulmonary embolism[65]. 
In a separate investigation, researchers employed a bioink 
composed of gelatin-sodium alginate blended with a 
suspension of lung cancer cells A549/95-D. By utilizing 3D 
bioprinting technology, they successfully created a tumor-
like lung cancer model[66]. However, the field still faces 
numerous challenges that must be addressed, especially 
concerning the development of materials and techniques 
specifically tailored for lung cells. One of the key objectives 
is to enable the formation of nanoscale architecture within 
the air–blood barrier, necessitating further research and 
innovation.

5. Nanoscale 3D bioprinting
5.1. Nanoscale 3D bioprinting techniques 
Nanoscale microenvironment features, such as ridges, 
steps, and grooves, have a significant impact on cell 
attachment, proliferation, and cytoskeletal assembly[67]. 

With the advancing integration of bioprinting and 
nanomaterials, engineered tissues are expected to achieve 
higher levels of complexity and functionality, gradually 
approaching the level of complete organ replicas[68,69]. 
Nanocomposite material inks have caught scientists’ 
attention, considering the pulmonary complexity[70,71]. 
Over the years, the convergence of 3D bioprinting with 
nanotechnology in lung reconstruction in vitro has gained 
increasing attention. Nanoscale 3D bioprinting entails the 
precise positioning of biomaterials, cells, and nanoparticles 
at the nanoscale resolution[72]. Nanoscale 3D bioprinting 
encompasses bioprinting of cells in precise distribution and 
arrangement, thereby facilitating their interaction with the 
matrix, optimizing cell density in tissues, and orchestrating 
biochemical and biophysical processes within and between 
cells[73]. Nanoscale 3D bioprinting techniques, such as two-
photon polymerization or laser-assisted forward transfer 
(LIFT), enable precise layer-by-layer deposition of the 
bioink, facilitating the construction of desired structures 
at the nanoscale. Nanoscale bioprinting takes this process 
a step further by integrating nanomaterials, nanoparticles, 

Figure 3. Microscale 3D bioprinting for lung tissue. (A) Schematic diagram of pulmonary microscale structure. Created with BioRender (www.biorender.
com). (B) Schematic of the timeline for bioprinting the two cell-layer barrier system[60]. Reprinted (and adapted) with permission from Springer Nature. 
Copyright © 2015, The Author(s). (C) Biophysical characteristics of reinforced ECM (rECM) for microscale bioprinting and observation under scanning 
electron microscope (scale bars = 50 µm)[62]. Reprinted (and adapted) with permission from John Wiley and Sons. Copyright © 2022 The Authors. 
Advanced Science published by Wiley-VCH GmbH.
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or nanofibers into the material inks, thereby providing 
enhanced control over the cellular microenvironment and 
facilitating tissue development (Figure 4A). The process 
of nanoscale 3D bioprinting typically starts with the 
formulation of a bioink, which is a specialized material 
comprising living cells and biomaterials. Nanocomposite 
materials find widespread use due to their ability to 
enhance the mechanical traits of hybrid organic/inorganic 
composites[74]. Engineered nanofiber networks play a crucial 
role in promoting cellular growth and regulating cellular 
behaviors in a manner that closely emulates physiological 
conditions[75]. The application of nanotechnologies 
has been instrumental in engineering nanofibrous and 
nanocomposite structures, as well as nanoscale surface 
topographies and networks within scaffolds. These 
advancements effectively replicate the intricate nanoscale 
structure of various tissue types, including lung tissue. A 
remarkable advancement in research is the development 
of a transparent biomimetic nanoscale fibrillar matrix gel, 
offering flexibility in choosing bioink materials[76].

Nanoscale structure refers to the detailed anatomical 
components and organization of the lung at the nanoscale 
level[77]. It involves the study and understanding of the 
structures and processes that occur at the nanoscale 
within the lung tissue. The alveoli, which are the smallest 
pulmonary functional units, have complex nanostructures. 
The walls of the alveoli are extremely thin, facilitating 
efficient gas exchange[78]. The alveoli are lined with a 
surfactant layer, which is composed of lipids and proteins. 
These surfactant monolayers play a critical role in reducing 
surface tension within the alveoli, preventing their collapse 
during exhalation and promoting efficient gas exchange. 
Nanoparticles and gases can diffuse across the alveolar 
epithelium, enabling the exchange of oxygen and carbon 
dioxide between the air in the alveoli and the adjacent 
capillaries. Additionally, nanoscale vesicles and exosomes 
play a role in cellular communication. The surface of lung 
epithelial cells is lined with specialized nanostructures, 
such as microvilli or cilia, which aid in functions like 
absorption or mucociliary clearance. Understanding 
the nanoscale structure of the lung is crucial for 
comprehending respiratory diseases and the effects of 
nanoscale interactions on lung health.

5.2. Nanoscale 3D bioprinting for lung tissue 
recapitulation and application
Nanoscale 3D bioprinting technology enables the precise 
arrangement in 3D structures, mimicking the complexity 
and functionality of lung tissues. Researchers print 
nanoscale ECM hydrogels by extruding cellular and 
acellular gels into stacked cell ring structures, which has 
the potential to study lung nanostructures[79]. By accurately 

positioning these cells within the 3D structure, nanoscale 
bioprinting can promote the formation of functional lung 
tissue and facilitate gas exchange. A bioink-containing 
nanofibrils have been developed for nanoscale 3D-printing 
lung tissue scaffolds (Figure 4B)[80]. One of the primary 
challenges in 3D bioprinting is to achieve precise 
control over the nanoscale architecture while ensuring 
compatibility with living cells. Nanoforms play a crucial 
role in promoting cell survival, growth, and differentiation, 
enabling cells to assume the necessary functions for tissue 
regeneration and repair.

Concerning efficient gas exchange, it is crucial to 
accurately manufacture the thin air–blood barrier via 
LTE. Advanced lung tissue models in the field are highly 
sought-after, aiming to achieve both biomimetic structural 
properties and the ability to precisely regulate cell behavior. 
The researchers prepared a three-organ chip composed of 
liver, heart, and lung through 3D nanobioprinting, and 
evaluated its physiological response to drugs and toxic 
substances[81]. The nanofibrous structure, resembling 
the morphology of the ECM, promotes cell attachment 
and enhances nutrition and oxygen transport due 
to its high surface area and interconnectivity[82]. The 
submicrometer pore structure and pore size can be 
controlled between 1000 µm and 10 nm, and its excellent 
adsorption performance is beneficial to the 3D culture 
of cells (Figure 4C)[83]. Nanoscale structural elements in 
3D bioprinting can be effective in the promotion of cell 
distribution and new tissue formation. Furthermore, 3D 
bioprinting has emerged as a valuable tool in the design 
and development of disease models, including infectious 
diseases like COVID-19. At the nanoscale, 3D bioprinting 
allows for the creation of realistic disease models that can 
be used for studying pathogenesis, drug discovery, and 
personalized medicine[84]. Continued advancements in 
nanomaterials and nanoscale fabrication techniques will 
further contribute to the advancements in respiratory 
disease research.

6. Challenges and future directions
3D bioprinting is a promising technology with vast 
potential in tissue engineering, although it is still in its 
early stages of development. Several technical challenges 
must be addressed, particularly achieving high-resolution 
cell patterning and distribution. Current techniques like 
material extrusion have several drawbacks, including 
low cell viability, resolution, and working speed, which 
hinder the fabrication of submicroscale and nanoscale 
structures. To enable the production of macroscale tissues 
for clinical applications, printing capabilities and speed 
must be improved[85]. In addition, for successful in vivo 
transplantation, the printed tissue must possess appropriate 
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mechanical traits to facilitate suturing with the host 
circulation and withstand the rhythmic pulsations of blood 
flow[86]. To realize the objective of bioprinting functional 
tissues, it is crucial to foster collaboration and integrate 
expertise from diverse fields, such as manufacturing, 
material science, biology, and medicine. By bringing 
together experts from different fields, we can collectively 
tackle these obstacles and pave the way for groundbreaking 
advancements in the field of bioprinting[87,88]. In summary, 
while 3D bioprinting holds great potential for fabricating 
functional tissues, it requires concerted efforts and 
interdisciplinary collaborations to overcome technical 
challenges and advance the field toward clinical translation.

The complex multiscale structure of organs and tissues 
presents a significant challenge for replication using a 
single program or tool[89,90]. Future development will focus 
on multisize, multimaterial, and multicell bioprinting, 
integrating precise modeling of cell–cell interactions 
and segregation at the intratissue level, combined with 
architectural control at the macroscale (Figure 5). This 

approach shows promise for engineering tissue constructs 
that closely resemble native tissues in their morphometric 
features[91]. While bioprinted constructs have demonstrated 
high cell viability and specific functions in laboratory 
research, they are still in the early stages of development and 
not ready for clinical applications[92,93]. Except for advanced 
structural design, it is important to determine the role of 
mechanical cues in lung-related research as to design, 
develop, and apply suitable material inks[94,95]. With every 
breath, lung cells are subjected to dynamic or continuous 
mechanical loads, including tension, compression, and 
shear stress. These mechanical forces serve as vital signals 
for maintaining the steady state, remodeling, and optimal 
functioning of lung tissue. By simulating physiological 
respiratory movement through cyclic mechanical stretch, 
more realistic lung models can be achieved[96]. Considering 
the mechanical cues and their associated signaling 
pathways in the design of material inks for bioprinting lung 
tissue can help us build a more realistic functional model. 
By incorporating these mechanical regulatory factors into 

Figure 4. Nanoscale 3D bioprinting for lung tissue. (A) Nanomaterials-assisted bioprinting to simulate alveolar nanostructures. Created with BioRender 
(www.biorender.com). (B) Process of fabricating silk fibroin (SF) solution, oxidized bacterial cellulose (OBC) paste, SF-OBC composite ink, and SF-OBC 
nanofibrils hydrogel for the proliferation of lung epithelial stem cells[80]. Reprinted (and adapted) with permission from Springer Nature. Copyright © 2020, 
Springer Nature B.V. (C) 3D objects with nanoscale porous structures are manufactured by using digital light processing printing technology[83]. Reprinted 
(and adapted) with permission from Springer Nature. Copyright © 2021, The Author(s).
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the bioprinting process, researchers can create material 
inks that mimic the mechanical microenvironment of the 
lung, promoting cell behavior and tissue development that 
closely resemble native lung tissue.

Despite being in its early stages of development, 3D 
bioprinting is showing great promise in the field of TE[97]. 
Beyond organ printing, 3D bioprinting has multifaceted 
applications in medicine, including testing drug delivery 
systems and advancing lung disease treatments. Through 
the simulation of lung tissue characteristics, it enables 
more accurate assessments of drug delivery and release 
efficiency for treating lung diseases[98]. Moreover, by 
replicating patients’ lung tissues using 3D bioprinting, 
researchers gain valuable insights into the underlying 
causes of diverse lung diseases, significantly improving 
disease understanding and fostering the development of 
novel treatments and medications. An additional benefit 
of 3D bioprinting lies in its ability to create artificial 
lung tissue that precisely matches a patient’s unique 
anatomical structure. This advancement is invaluable in 
predicting organ compatibility and evaluating potential 
outcomes before actual transplantation takes place. By 

conducting pretrials with artificial lung tissue, the risk 
of organ transplantation failure is reduced, and tailored 
treatment plans can be devised, ultimately improving 
patient outcomes. The continuous advancements of 3D 
bioprinting research further expand its application in RM, 
drug discovery, and personalized healthcare. With further 
developments and refinement, the field of medicine has the 
potential to undergo a transformative revolution with the 
advent of 3D bioprinting.
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