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Abstract
In this study, a rheology-informed hierarchical machine learning (RIHML) model 
was developed to improve the prediction accuracy of the printing resolution of 
constructs fabricated by extrusion-based bioprinting. Specifically, the RIHML model, 
as well as conventional models such as the concentration-dependent model and 
printing parameter-dependent model, was trained and tested using a small dataset 
of bioink properties and printing parameters. Interestingly, the results showed that 
the RIHML model exhibited the lowest error percentage in predicting the printing 
resolution for different printing parameters such as nozzle velocities and pressures, 
as well as for different concentrations of the bioink constituents. Besides, the RIHML 
model could predict the printing resolution with reasonably low errors even when 
using a new material added to the alginate-based bioink, which is a challenging task 
for conventional models. Overall, the results indicate that the RIHML model can be a 
useful tool to predict the printing resolution of extrusion-based bioprinting, and it is 
versatile and expandable compared to conventional models since the RIHML model 
can easily generalize and embrace new data.
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1. Introduction
In recent times, additive manufacturing approaches including three-dimensional (3D) 
bioprinting have emerged as essential tools for fabricating artificial tissue and organ 
constructs. Specifically, compared to conventional biofabrication methods, the 3D 
bioprinting technique can effectively deposit bioink layer by layer with a designed 
combination of biomaterials and living cells in desired locations and patterns[1-5]. 
The primary bioprinting methods include inkjet-based bioprinting, extrusion-based 
bioprinting, and laser-assisted bioprinting[6-9]. Among them, extrusion-based bioprinting 
has been the most widely used technique for research and commercial purposes. This is 
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principally due to the availability of a wide range of usable 
material viscosity, which allows for freedom in material 
selection when preparing bioink[10-16].

However, the advantages of the generous availability of 
bioink candidates including hydrogels, extracellular matrix, 
bioceramic particles, and shear thickening materials create 
difficulties in tuning bioink compositions and finding 
appropriate printing conditions[17,18]. Thus, to overcome 
these challenges and complexities in the preparation of 
bioinks and extrusion-based bioprinting, printability has 
recently attracted considerable attention. Although the 
definition of printability in extrusion-based bioprinting 
is still in discussion, it is obvious that better printability 
can improve the printing accuracy and shape fidelity of 
the printed constructs, leading to faster fabrication speed 
and long-term stable functionality[19-22]. Further, recent 
printability studies have quantitatively evaluated printing 
accuracy and shape fidelity using the assessment of various 
outcomes, such as printing resolution relative to the nozzle 
diameter, distance between filaments, pore size and shape 
in a grid structure, and height of the stacked layers[23-25]. In 
addition, these studies have demonstrated that printability 
is deeply linked to how to control the rheological properties 
of bioinks (viscosity, shear modulus, and gelation) and 
the printing parameters (printing pressure, temperature, 
nozzle size, nozzle length, and nozzle velocity)[26-32]. 
However, it is still difficult to find the optimal printing 
conditions because the assessment of the printability 
often relies on trial and error with a repeated change of 
the bioink composition and printing parameters, which is 
time-consuming and cost-ineffective.

Hence, printability prediction is critical to the accurate 
and effective fabrication of tissue-engineered constructs 
using the extrusion-based bioprinting technique. In several 
existing studies, the physical model-based computation 
was adopted for printability prediction[33-38]. More 
precisely, the physical model of printability prediction was 
derived from hydrodynamic equations combined with 
the rheological modeling of generalized Newtonian fluid, 
mainly power-law fluid. Using the physical model, the 
printing resolution of the output filament was simulated 
with multiple printing parameters and compared with the 
actual printing resolution. Although several studies using 
the physical model reported interesting results, the model 
holds many assumptions and simplifications, limiting its 
application in various bioprinting tasks. For instance, the 
physical prediction model is highly sensitive to the power 
law index, which can be obtained by the line fitting of 
the measured viscosity. Thus, small errors in rheological 
measurement and line fitting may have a significant effect 
on prediction accuracy. Additionally, the assumptions in 
the physical model, such as the incompressibility of bioink 

and the ideal pressure drop in the system, may not coincide 
with reality; hence, the accumulated errors can cause a gap 
between the predicted and actual results.

Recently, multiple studies of printability prediction 
using machine learning have been reported to overcome 
the limitations of physical models. Besides, due to the 
time-consuming and sequential bioprinting procedure 
from bioink preparation to 3D deposition, the size of the 
acquired dataset is relatively small. Therefore, most of these 
studies employed simple supervised machine learning 
methods, such as support vector machine, decision 
tree, lasso regression, and ridge regression, to estimate 
printing resolution with the confined variation of bioink 
composition and printing parameters[39-43]. Specifically, 
a few studies employed artificial neural networks for 
printability prediction, but its architecture is hardly 
deep with shallow hidden layers and a limited number 
of neurons because of the dataset size[44-46]. Moreover, in 
most of the neural network-based printability prediction 
models, superficial parameters such as the concentration 
of each bioink component were used in the input layer of 
the artificial neural network. This may significantly limit 
the expandability of the machine learning model since 
the neural network should be rebuilt and newly trained 
for every change in the bioink composition. Therefore, an 
improved machine learning model, which is versatile with 
various bioink combinations and penetrates the essence 
of bioprinting with profoundly related parameters, is 
required.

Furthermore, the rheological properties, such as 
viscosity and shear modulus, of bioinks have been 
verified to be closely related to the printing parameters to 
optimize the printability of extrusion-based bioprinting 
(Figure 1)[47-53]. For instance, even though the viscosity 
of bioink increases, the flow rate can be maintained if the 
printing parameters such as pressure and nozzle size are 
appropriately increased. Even with the same flow rate, the 
printing resolution significantly correlates with the shear 
modulus and nozzle velocity. Despite the deep correlation 
between rheology and printability, there have been no 
studies that actively applied rheological measurements 
of various bioinks and multiple printing parameters to 
machine learning.

Therefore, in this study, a rheology-informed 
hierarchical machine learning (RIHML) model was 
developed to predict printability in extrusion-based 
bioprinting. Among previously suggested methods to 
quantify printability, the assessment of printing resolution, 
which has been widely applied in numerous printability 
studies, was mainly adopted. To construct a dataset for 
training the models, the optical images of printed scaffolds 
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were collected with various printing conditions and bioink 
concentrations on a digital microscope. The acquired 
image was processed to quantify the printing resolution 
using an automated program to calculate strand size. In 
addition, the assessed viscosity and storage modulus were 
used as a rheological dataset to construct the input layers of 
a multi-input neural network combined with the printing 
parameters. Thus, the RIHML model, as well as the 
conventional models such as the concentration-dependent 
machine learning (CDML) model and printing parameter-
dependent machine learning (PDML) model, was trained 
and tested using a small dataset of bioink properties and 
printing parameters. After model training, the prediction 
accuracy using each machine learning model was verified 
and compared for different printing parameters, such 
as nozzle velocities and pressures, as well as for different 

concentrations of bioink constituents. In addition, printing 
resolution was assessed using a new material added to 
the alginate-based bioink, to examine the feasibility of the 
RIHML as a versatile and expandable tool to predict the 
printing accuracy in extrusion-based bioprinting.

2. Materials and methods
2.1. Bioink preparation
In this study, ten bioinks were prepared using three 
base hydrogels and three additives as shown in Table  1. 
Precisely, Pluronic F-127 (F127, Sigma-Aldrich) was used 
as the base material without additives. Particularly, it was 
dissolved in deionized water at 4°C and prepared with three 
concentrations of 35%, 40%, and 45%. Another base bioink 
material, gelatin (porcine skin-derived, Sigma-Aldrich), 

Figure 1. Overview of the process of the prediction of printing resolution based on a rheology-informed hierarchical machine learning model.



Rheology-informed machine learning model

311Volume 9 Issue 6 (2023) https://doi.org/10.36922/ijb.1280

International Journal of Bioprinting

was mixed homogeneously with xanthan gum (XG, Sigma-
Aldrich) in three concentrations of 2%, 3%, and 4% in a 
planetary centrifugal mixer (AR-100, Thinky). Additionally, 
sodium alginate (Sigma-Aldrich) was used as a base 
material, and it was crosslinked by calcium chloride (CaCl2, 
Sigma-Aldrich) with two concentrations of 0.2% and 0.3%, 
to increase the viscosity. Specifically, the sodium alginate and 
CaCl2 were mixed at a ratio of 7:3 using a three-way stopcock, 
and the final concentration of the alginate solution was 2%. 
Furthermore, cellulose nanocrystal (CNC, CelluForce) 
was utilized to improve the rheological properties of the 
alginate-based bioink. To prepare the sodium alginate/CNC 
composite bioink, sodium alginate solution was mixed with 
dispersed CNCs in deionized water using the planetary 
centrifugal mixer, and the final concentrations of CNC were 
2.5% and 5%, respectively.

2.2. Rheological characterization
The rheological properties of the bioinks were measured 
using a rotational rheometer (HR-2, TA Instruments) with 
a 20 mm parallel plate at a gap distance of 1000 μm. In 
addition, the printing temperature of the gelatin-based 
bioink was estimated by a temperature sweep test, which 
measured the storage modulus and loss modulus at an 
angular frequency of 10 rad/s. Specifically, for the flow 
sweep test, the shear rate was increased from 0.1 to 1000 
1/s at 23°C for alginate-based and Pluronic-F127 bioinks. 
For gelatin-based bioinks, the temperature was set to 35°C 
to enhance printability. Following the amplitude sweep 
to determine the appropriate strain, the frequency sweep 
test was conducted to evaluate storage modulus within 
a specific angular frequency range. Specifically, the test 
commenced at 0.1 rad/s and concluded at 500 rad/s with 
the same temperatures as in the flow sweep test and a strain 
of 1% for each bioink.

2.3. Bioprinting
In this study, all bioinks were printed with the same one-
layer scaffold structure. More precisely, the structure was 
designed with physical dimensions of 12 × 24 mm and 
a strand-to-strand distance of 4 mm. Specifically, all the 
scaffolds were fabricated at the same distance of 0.4 mm 
between the nozzle tip and the printing plate. Furthermore, 
two types of nozzles, i.e., 21G (inner diameter: 514 μm) 
and 23G (inner diameter: 337 μm) with multiple lengths 
(L: 2.54 cm in length for 21G and 23G; S: 1.27 cm in length 
for 21G), were used to print the scaffolds. Additionally, the 
Pluronic-F127 and sodium alginate-based bioinks were 
printed at room temperature (23°C), and the gelatin-based 
bioinks were printed at a temperature of 35°C, which was 
the same as the rheological characterization. Moreover, 
four different values of the nozzle velocity (speed of printer 
head movement), including 1, 2, 4, and 8 mm/s, were 
examined in the bioprinting process. Due to the differences 
in viscosity and yield strength of the bioinks, the printing 
pressure was adjusted depending on the extrudability of 
each bioink at a pressure range between 10 and 350 kPa.

2.4. Data acquisition
The processes of printing and rheological data acquisition 
for the prediction of printing resolution are described 
in Figure 2A. In the first step, bioinks with different 
compositions and concentrations (F127, gelatin/XG, 
alginate/CaCl2, and alginate/CNC) were prepared; 
afterward, measurement of the rheological properties 
and printing of scaffolds were performed, respectively. 
Specifically, structures were fabricated in the extrudable 
range of each bioink with a designated path. Precisely, 
scaffolds were printed with five-center lines, and images 
were taken and saved by a digital microscope in 2592 × 
1944 pixels. Except for a reference line, four lines were 
evaluated in the images to calculate the printing resolution 

Table 1. Different types of bioink and their compositions in weight percentage

Formulation F127 (%) Alginate (%) CaCl2 (%) CNC (%) Gelatin (%) XG (%)

F127 35% 35 0 0 0 0 0

F127 40% 40 0 0 0 0 0

F127 45% 45 0 0 0 0 0

Gelatin 10%/XG 2% 0 0 0 0 10 2

Gelatin 5%/XG 3% 0 0 0 0 5 3

Gelatin 10%/XG 4% 0 0 0 0 10 4

Alginate 2%/CaCl2 0.2% 0 2 0.2 0 0 0

Alginate 2%/CaCl2 0.3% 0 2 0.3 0 0 0

Alginate 2%/CNC 2.5% 0 2 0 2.5 0 0

Alginate 2%/CNC 5% 0 2 0 5 0 0

Abbreviations: CNC, cellulose nanocrystal; XG, xanthan gum.
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using the algorithm to measure the strand size, as shown 
in Figure S1 (Supplementary File). In particular, the 
algorithm was composed of two main steps. The first step 
was finding the path line, which can decrease errors by 
a missed detection of the line. Afterward, the image was 
changed to grayscale, and a position where the centers of 
the maximum signals on each line matched the printing 
path was found. The second step was to quantify the average 
strand size. Specifically, the image was reconstructed to a 
binary one and cropped with white pixels to leave 2 mm 
from the center lines to each side. Particularly, nine lines 
in the cropped image were selected using a projection 
grade of white pixels. Specifically, when the path and 
the selected lines were matched up, the average strand 
size of the scaffolds was calculated. The information on 

material concentration, printing pressure, nozzle diameter, 
nozzle length, nozzle velocity, and printing resolution 
was stored in the printing dataset. Furthermore, to create 
a sub-dataset for the rheological properties, 41 values of 
measured viscosity and 21 values of storage modulus data 
were acquired at the angular frequency region from 0.1 to 
10 rad/s and subsequently, saved with bioink information.

2.5. Machine learning model
This study utilized two classical machine learning algorithms 
(random forest [RF] and support vector machine [SVM]), 
two conventional machine learning models (printing 
parameter-dependent machine learning model [PDML] 
and concentration-dependent machine learning model 
[CDML]), and a developed multi-input machine learning 

Figure 2. (A) Process of data acquisition: investigation of printing resolution and rheological assessment. 3D graphs of the collected data with printing 
parameters for the bioink compositions of (B) F127, (C) gelatin/xanthan gum, (D) alginate/CaCl2, and (E) alginate/CNC composite.
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model (rheology-informed hierarchical machine learning 
model [RIHML]) to predict the printing resolution using 
regression as shown in Figure 3D. Two representative 
classical machine learning algorithms, RF and SVM, were 
implemented using the sci-kit learn package in Python. 

Additionally, the Keras module from TensorFlow was used 
to develop the artificial neural network-based models, 
which specifically consisted of rectified linear unit (ReLU) 
function with the same hyperparameters, such as batch 
size and epoch. Furthermore, the train set, validation set, 

Figure 3. Structure of artificial neural network-based models: (A) the parameter-dependent machine learning model, (B) the concentration-dependent 
machine learning model, and (C) the rheology-informed hierarchical machine learning model. (D) Table of the machine learning model types and 
corresponding model names.
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and test set split by the ratio of 6:2:2 were performed with 
an applied random seed and fixed to all the models to avoid 
overfitting and estimate learning performance. To assess 
the performance of learning, mean squared error (MSE) 
was used for loss estimation.

Specifically, two classical machine learning algorithms, 
RF and SVM, were prepared based on conventional 
regression models using ensembles of multiple decision 
trees and hyperplanes with maximum margin, respectively. 
Moreover, the two conventional machine learning models 
consisted of an input layer, hidden layers, and an output 
layer as shown in Figure 3A and B. Specifically, the 
printing parameter-dependent machine learning model 
uses only printing parameters, such as printing pressure, 
nozzle velocity, nozzle diameter, and nozzle length. 
Besides, the concentration-dependent machine learning 
model was incorporated into the input layer consisting of 
the printing parameters and the concentrations of each 
bioink material.

Additionally, the RIHML was used with a multi-
input layer model consisting of three input layers with 
hidden layers, concatenated layer, and its hidden layer; 
and an output layer shown in Figure 3C. The rheological 
properties, such as the viscosity and storage modulus, 
were used as the first and second input layers of the 
RIHML, respectively; and the last input layer consisted of 
the printing parameters. The hidden layers of each input 
layer were calculated separately and concatenated with the 
output layer. The final output was derived with a second 
hidden layer whose input is the concatenated output of the 
first hidden layer.

2.6. Prediction of the printing resolution
The machine learning models predicted the printing 
resolution with different cases involving new printing 
parameters, different concentrations, and different bioink 
compositions. More particularly, a dataset was created by 
multiple compositions of F127, gelatin/XG, and alginate/
CaCl2. Splitting was employed to train the model, except 
for the variable required to perform the prediction in the 
pre-training stage. Specifically, the independent datasets 
in the pre-training stage were provided for each machine 
learning model. They were divided into three parts 
(training set, validation set, and testing set) to train the 
model and estimate learning performance. The trained 
models have predicted printing resolution with a dataset 
consisting of excluded variables in the training dataset. The 
error criterion evaluating printing resolution accuracy was 
evaluated using Equation I.

Error %
AR PR

AR
( ) =

−
×100  (I)

where AR is the actual printing resolution and PR is the 
predicted printing resolution. This represents the difference 
between the actual and predicted value. Moreover, four 
different nozzle velocities and five unequal pressure values 
were used as the variables of the printing parameters to 
predict the printing resolution with two conventional 
machine learning models and the RIHML. Specifically, 
the printing resolution was predicted by different material 
concentrations of bioinks with a split dataset via CDML 
and RIHML. Additionally, a new composition, alginate/
CNC composite bioink, was used to investigate the 
possibility of predicting the novel materials not considered 
in the training set with CDML and RIHML. In the case 
of CDML, the number of input layer neurons correlate 
with the number of materials. It means that by adding 
a new material, parameters of the new material, such as 
concentration, should be included in the input layer, thus 
increasing the neurons. To follow the previous structure, 
the neuron of the CNC existed in the input layer of CDML.

In addition, to provide a visual representation, 
binary images of the printed scaffolds were created using 
simulation. To generate the binary image, the printing 
strand size obtained from the machine learning model 
was converted into pixels. Using the converted strand size, 
the single-pixel lines representing the actual printing path 
were dilated considering printing directions and angles. 
Afterward, the resulting binary values were converted 
to the binary image to accurately simulate the printed 
scaffolds based on the predicted printing strand size.

3. Results
3.1. Rheological properties of hydrogels
In this study, the viscoelastic properties including viscosity 
and storage modulus were assessed and implemented into 
a rheological dataset of the bioinks. As shown in Figure 4A, 
the viscosity for ten bioinks was prepared to compare the 
viscoelastic properties. Specifically, the shear-thinning 
behavior was observed in the flow curves of all bioinks, 
and the F127-based bioinks exhibited the highest viscosity 
compared to other bioinks. The flow curves of gelatin- 
and alginate-based bioinks are relatively low and partially 
overlapped while increasing shear rates. Consequently, the 
viscosities for various bioinks were compared with each 
other at the shear rate of 100 1/s as shown in Figure 4B. 
The storage modulus was also measured to investigate the 
mechanical strength of the bioinks (Figure 4C and D). 
Similar to the viscosity assessment, the highest shear moduli 
were shown with the F127-based bioink. Additionally, 
viscosities and storage moduli of gelatin- and alginate-based 
bioinks were correlated with the increasing concentration 
of gelatin/XG and CNC, respectively. However, while the 
shear moduli of alginate-based bioinks crosslinked with 
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CaCl2 were increased with the concentration of CaCl2, 
their viscosities decreased as the concentration of CaCl2 
increased. Overall, the dataset of rheological properties 
was collected for each composition with 41 and 21 values 
of viscosity data and storage moduli, respectively.

3.2. Printing data acquisition
A self-developed imaging setup and algorithm were used 
to identify and quantify the printing strand size in the 
microscopic images. Specifically, the printing resolution 
was evaluated based on the quantified strand size ranging 
from 0 to 4 mm. All the bioinks were printed with various 
pressures, four velocities, and three nozzle types as shown 
in Figure 2B and Figure S3 (Supplementary File). The 
range of the pressure for printing the bioinks was from 10 
to 350 kPa. Furthermore, for each nozzle velocity, about 
110 data were investigated to figure out the printing quality. 
In total, 537 printing resolution data were accumulated by 
10 compositions of bioinks. Specifically, 72, 47 to 49, 45 
to 47, and 41 to 44 data were collected with F127, gelatin/

XG, alginate/CaCl2, and alginate/CNC, respectively, as 
presented in Table S1 (Supplementary File).

3.3. Machine learning
In this study, the learning performance of the machine 
learning models was verified using the collected datasets 
of printing resolution. Specifically, they were divided into 
a training set and a test set, as shown in Figure 5A and B. 
Figure S4A–C (Supplementary File) present the training 
loss and validation loss in the learning curve at 300 
epochs for PDML, CDML, and RIHML. Generally, after 
successful training, the training loss was lower than the 
validation loss. The rheology-informed model exhibited 
the lowest training loss of 0.05 and validation loss of 0.08 
compared with the training loss of 0.08 and validation loss 
of 0.13 in the concentration-dependent model, which was 
similar to the tendency often seen in successful training. 
Nevertheless, training using the parameter-dependent 
model was not effective with a higher training loss of 
0.68 than the validation set loss of 0.62. Additionally, 

Figure 4. Rheological properties of the bioinks. (A) Viscosity and (C) storage modulus of the bioinks of F127, gelatin/xanthan gum, alginate/CaCl2, and 
alginate/CNC. (B) Viscosity at a specific shear rate of 100 1/s and (D) storage modulus at a specific angular frequency of 100 rad/s.
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as shown in Figure 5E, the PDML predicted every test 
resolution to be 1.68 mm, which does not match the 
actual values ranging from 0 to 4 mm while other artificial 
neural network models showed reasonable fitting results 
(Figure 5F and G). The experimental results from the RF 
model had a large standard deviation of errors as shown in 
Figure 5C, indicating that the prediction was significantly 
biased. Furthermore, prediction accuracy using another 
classical machine learning model, SVM, showed a similar 

trend with PDML, resulting in inadequate fitting as 
depicted in Figure 5D. These models also exhibited large 
errors of approximately 40%, as described in bar graphs 
in Figure  5H. As a result, the prediction of two classical 
machine learning models and PDML imply that it is not 
appropriate for forecasting the printing resolution of 
various bioink types. Furthermore, the predicted resolution 
of the rheology-informed model most accurately matched 
the actual printing resolution.

Figure 5. 3D-stacked bar graphs with printing parameters for (A) full dataset and (B) test dataset with the bioinks of F127, gelatin/xanthan gum, and 
alginate/CaCl2. Fitting actual values with prediction values with (C) random forest (RV), (D) support vector model (SVM), (E) parameter-dependent 
machine learning (PDML) model, (F) concentration-dependent machine learning (CDML) model, and (G) rheology-informed hierarchical machine 
learning (RIHML) model. (H) Bar graph of average errors for each model.
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3.4. Prediction of printing resolution
3.4.1. Prediction with new printing parameters
Three machine learning models were compared to predict 
printing resolution using different parameters, including 
nozzle velocity and pressure. Particularly, the same 
datasets were used to train and predict each machine 
learning model as described in Figure 6A and Table  S1 
(Supplementary File). As shown in Figure 6B and C, 
all errors have a similar trend when nozzle velocity was 
used as a variable of bioprinting. Descriptively, when the 
velocity was 4 mm/s, the errors were lowest and equal to 
36.6%, 21.4%, and 12.0% for PDML, CDML, and RIHML, 
respectively; however, by increasing the velocity to 8 mm/s, 
the errors rose to 54%, 30.2%, and 26.9% for PDML, 
CDML, and RIHML, respectively. The prediction results 
with different nozzle velocities indicate that the rheology-

informed machine learning model exhibited the lowest 
error (18.8% on average) among all models. Furthermore, 
errors in the prediction of printing resolution with various 
pressures (50, 70, 90, 110, and 130 kPa) using the machine 
learning models are illustrated in Figure 6D and E. RIHML 
could predict the printing resolution with the lowest error 
(10.38% on average), which is 2-fold and 5-fold lower than 
CDML and PDML, respectively. The highest error in the 
PDML model was around 123% in 130 kPa, demonstrating 
an approximately 13-fold error using RIHML at the same 
condition.

3.4.2. Prediction with different concentrations of 
bioink components
Due to the neural network structure of the PDML, it is 
hardly used for varying concentrations of bioink. Thus, 

Figure 6. (A) Stacked bar graph of the amount of data for different materials and nozzle velocities. (B) 3D bar graph and (C) table of calculated errors in various 
nozzle velocities (1, 2, 4, and 8 mm/s) and different machine learning models (PDML, CDML, and RIHML). (D) 3D bar graph and (E) table of calculated 
errors in various pressures (50, 70, 90, 110, and 130 kPa) with different machine learning models (PDML, CDML, and RIHML). Abbreviations: CDML, 
concentration-dependent machine learning; RIHML, rheology-informed hierarchical machine learning; PDML, parameter-dependent machine learning.
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the prediction of printing resolution with different 
concentrations of bioink components has proceeded 
with two machine learning models including CDML and 
RIHML. Specifically, the error maps in Figure 7A and B 
indicate the errors of predicted resolution compared to 
the actual resolution with various material concentrations, 
nozzle velocities, and nozzle types, using CDML and 
RIHML, respectively. Particularly, most regions of the 
error map of RIHML are bluish having low numbers of 
yellow squares with low prediction errors. Nevertheless, 
in the error map of the CDML, many yellow squares 
were observed with high prediction errors. For instance, 
the prediction of F127 45%, gelatin 10% combined with 
xanthan gum 4%, and alginate 2% crosslinked with CaCl2 
had significantly large errors with different nozzle types and 
speeds. Furthermore, for the prediction using CDML, the 
errors were more than 50% in 45 data and 75% in 27 data 
among the total data number of 96, which implies a high 
prediction error of this method. In contrast, the errors of 
only two data were over 75% at the F127 concentration of 
45% using RIHML. Figure 7C and D visualize the average 
errors to compare the printing accuracy for each bioink 
composition. Further, the prediction using both machine 
learning models exhibited relatively high errors with the 
concentration of F127 of 45%, but the average error is 

approximately two times higher in CDML. The prediction 
with the rheology-informed hierarchical model exhibits 
less error than the concentration-based model in all the 
concentrations.

3.4.3. Prediction of the different bioink integrated 
with a new material
To demonstrate the prediction of the bioink incorporated 
with a new material, which is significantly challenging 
with current bioprinting prediction techniques, non-
trained bioinks were prepared by mixing the alginate 
solution with CNC in two concentrations of 2.5% and 
5%. Therefore, the model training proceeded without 
data on alginate/CNC composition as shown in Table S1 
(Supplementary File). Precisely, Figure 8A shows that 
85 cases were collected with alginate/CNC composites 
to consist of a prediction dataset. More so, the predicted 
resolution of the new compositions and a fitted line of 
actual printing resolution are shown in Figure 8B and C. 
In the prediction results using CDML shown in Figure 8B, 
most of the predicted points in red color with alginate 2%/
CNC 5% composition strayed from the defined resolution 
range from 0 to 4 mm. This result implies the difficulty 
of predicting printability when new materials are added 
to bioink. In comparison, all the prediction data using 

Figure 7. Error map of the prediction of printing resolution with different concentrations of bioinks using (A) concentration-dependent model and  
(B) rheology-informed model. (C) Bar graph of errors in the prediction at each bioink composition. (D) Table of error values for different bioink 
formulations and prediction models.
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RIHML existed within the range of the axis as shown in 
Figure 8C. To quantitatively elucidate this phenomenon, 
Figure 8D and E can differentiate the average prediction 
accuracy between the concentration-dependent model 
and the rheology-informed model. The RIHML method 
can adequately predict the printing resolution of bioink 
with new material, but CDML predictions are unreliable 
and have significant errors. Specifically, the concentration-
dependent model shows approximately 10-fold errors 
compared to the rheology-informed model using the same 
prediction dataset. This result implies the performance of 
RIHML is less affected by the bioink composition, even 
with new materials. Furthermore, to visually compare the 
strand size of actual printing and prediction using RIHML, 
the binary images of the printed scaffolds were created 
using simulation and compared with their actual images. 
Figure 8F shows actual images of the printed alginate/
CNC scaffolds. The simulated images using the printing 

resolution of the alginate/CNC composition predicted by 
RIHML are presented in Figure 8G and agreed well with 
the actual images.

4. Discussion
This study reports the application of a rheology-informed 
hierarchical model to enhance the prediction accuracy 
of the printing resolution of constructs fabricated by 
extrusion-based bioprinting. Specifically, five different 
machine learning models, including the RIHML model 
as well as two classical machine learning models (RF and 
SVM) and the conventional models based on artificial 
neural networks (concentration-dependent model and 
printing parameter-dependent model), were trained 
and tested using a small dataset of bioink properties and 
printing parameters. More precisely, the models were 
used to predict the printing resolution in three different 

Figure 8. Prediction of printing resolution using the trained models with different concentrations of CNC incorporated with 2% alginate. (A) The number 
of results for alginate/CNC composition at different velocities. Fitting actual values with prediction values with (B) CDML and (C) RIHML. (D) Bar graph 
of average errors for each model. (E) Error values for different bioinks formulations and prediction models. Visual comparison between (F) actual image 
of printed alginate/CNC composition and (G) simulated image using the printing resolution predicted by RIHML. Abbreviations: CDML, concentration-
dependent machine learning; CNC, cellulose nanocrystal; RIHML, rheology-informed hierarchical machine learning.
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cases, including new printing parameters with trained 
bioink materials, new concentrations of the trained bioink 
constituents, and untrained bioink compositions with the 
new material. For different nozzle velocities, the results 
of the study showed that the RIHML model exhibited 
the lowest error percentage (around 18%) in predicting 
the printing resolution. Additionally, the RIHML model 
showed low error (around 10%) in predicting the printing 
resolution for different pressures, which is 2-fold and 
5-fold lower than CDML and PDML, respectively. 
Moreover, the printing resolution for different bioink 
concentrations was predicted, and it was demonstrated 
that the RIHML model exhibited lower error percentages 
than the CDML model for all the different concentrations 
of bioink constituents such as F127, gelatin, xanthan gum, 
and CaCl2. Additionally, the machine learning models 
were used to predict the printing resolution with a new 
material (CNC) added to the alginate-based bioink, which 
is the most challenging among the three cases. The results 
of the study showed that RIHML can predict the printing 
resolution with reasonably low errors while the printing 
resolution was hardly predictable using CDML with 
considerably large errors.

Overall, the experimental results indicate that the 
rheology-informed hierarchical model can be a useful 
tool to predict the printing resolution of extrusion-based 
bioprinting. Furthermore, while other studies related 
to the prediction of printability in bioprinting could 
anticipate the printability changes only with limited 
parameters, such as bioink material properties or printing 
conditions, the RIHML model is versatile to predict the 
printing resolution in different conditions of varying 
printing parameters, varying material concentrations, 
and new bioink compositions[40,43,54]. Additionally, 
the neural network structure of RIHML is based on 
rheological properties, which can be widely obtained 
from most biomaterials, and it can be trained without 
significant alterations of the structure. Therefore, the 
RIHML model is adaptable and expandable compared to 
the conventional models, and the printing and rheological 
datasets may be accumulated to enhance the prediction  
accuracy.

Since the formulation of bioinks and the process of 
bioprinting are more complicated and correlated, the 
prediction of printability in 3D bioprinting has become 
more challenging. Recently, there have been attempts 
related to the prediction of bioprinting printability using 
machine learning. However, unlike other fields such as 
medical imaging and genetics, 3D bioprinting suffers 
from data size, which may hardly be large because the 
preparation of bioinks with various compositions and 
their 3D printing with multiple parameters are sequential 

and highly time-consuming[55-57]. Therefore, it is crucial 
to develop an efficient machine learning model that 
is suitable for small dataset sizes while ensuring high 
prediction accuracy. With the hierarchical architecture of 
the developed model, RIHML can effectively predict the 
printing resolution of extrusion-based bioprinting using 
small datasets. In this study, the dataset of 537 numbers 
of bioink rheological properties and printing process was 
used for training, validation, and testing of the machine 
learning model. Several bioprinting studies employed 
small datasets to optimize printing resolution and 
parameters using conventional machine learning skills, 
but their practical applications were limited due to low 
prediction accuracy, poor expandability, and low training 
efficiency[41,42,44,45]. However, the RIHML model can easily 
generalize and embrace new data, even with a small dataset 
size owing to its intrinsic features in the dataset that are not 
biased to specific bioink, but rather are general. Moreover, 
due to the potential of data accumulation, if various 
rheological and printing data are additionally collected 
in sufficient size for deep learning, prediction using a 
rheology-informed neural network with deeper hidden 
layers may be attempted.

Although the RIHML model has the potential for 
accurate and robust prediction of printability, there is still 
room for improvement. Due to the generalizability of the 
bioink properties, a wider range of rheological properties 
of bioinks can enhance the prediction accuracy of the 
RIHML model. For instance, in the results presented in 
Figure 7C, relatively high errors were observed in F127 
with a concentration of 45%. Specifically, this may occur 
because its viscosity and storage modulus were the highest 
around the upper bound of the rheological data range. 
In terms of future work, it would be beneficial to further 
validate the performance of the RIHML model from other 
types of bioprinting methods, such as inkjet-based or 
laser-assisted bioprinting, to demonstrate the feasibility of 
rheology-based prediction of printability across different 
bioprinting methods. Additionally, future studies could 
investigate the potential of the RIHML model in predicting 
other aspects of printability, such as the extrudability, 
pore size, pore shape, and shape fidelity of the stacked  
layers.

5. Conclusion
In conclusion, this study suggests that the rheology-
informed hierarchical model can be a useful tool for 
predicting the printing resolution of constructs fabricated 
by extrusion-based bioprinting. Interestingly, the RIHML 
model demonstrated the lowest errors (around 18%) in 
predicting the printing resolution for different printing 
parameters such as nozzle velocities and pressures, 
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compared to the conventional models such as the 
concentration-dependent model and printing parameter-
dependent model. Additionally, the RIHML model 
also exhibited low error (around 10%) in predicting the 
printing resolution for different concentrations of bioink 
constituents, such as Pluronic F-127, gelatin, xanthan gum, 
and CaCl2. Furthermore, the RIHML model can predict 
the printing resolution with a new nanomaterial (CNC) 
added to the alginate-based bioink, which is hardly possible 
with conventional methods. This study demonstrated the 
importance of considering the rheological properties of 
bioinks in predicting the printability of extrusion-based 
bioprinting and highlighted the potential of the RIHML 
model as a useful tool for predicting the printing resolution of 
extrusion-based bioprinting. In addition, the results indicate 
that the RIHML model can be versatile and expandable in 
the prediction of bioprinting resolution, and the printing 
and rheological datasets may be accumulated to enhance 
the prediction accuracy. The potential for the RIHML model 
to generalize and embrace new data, even with a small 
dataset size, is an advantage in the field of 3D bioprinting 
where data size is limited due to the complexity and time-
consuming nature of the preparation of bioinks with various 
compositions and 3D printing with multiple parameters.
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