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Abstract

Bioprinting is an emerging technology for tissue engineering and regenerative
medicine. Despite its fast, accurate manufacture for tissues and organs in vitro,
bioprinting has been seriously limited for biofabrication because of the restricted
approaches to reproducing the extracellular matrix (ECM) with sufficient bioactivities
for bioprinted cells. Exosomes are natural biological particles with proteins, lipids,
or genetic materials. They have distinct properties and unique biological functions
to manipulate cellular behaviors and cell fates, showing great potential to support
cells for bioprinting. Here, we reviewed the recent progresses of exosome-advanced
bioprinting for tissue engineering and regenerative medicine. Firstly, we offer an
overview of the basics of exosomes and the current representative applications of
exosomes in bone tissue engineering, immunological regulations, angiogenesis, and
neural regenerations. Then, a brief introduction about the bioinks and the currently
developed bioprinting methodsis provided. We further give an in-depth review of the
biomedical applications of bioprinting with exosomes, majorly in bone engineering,
vascular engineering, therapy of neuron injury, and skin regeneration. We also
conclude with an outlook on the challenges of the unmet needs of bioprinting cells
with correspondent ECM environments through bioprinting with exosomes.

Keywords: Exosomes; Bioprinting; Bioinks; Regenerative medicine; Tissue
engineering

1. Introduction

Bioprinting is derived from three-dimensional (3D) printing technology. It can apply
cells, proteins, DNA, and other biological materials into personalized 3D models or
3D biological functional structures through printing technology in vitro. Bioprinting
operated with computer-assisted designs (CADs) has exhibited the potential to
reproduce the complexity of native tissues in terms of the mechanical properties, the
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specific structures, and the interactions between cells and
their extracellular matrices (ECMs)"3l,

Bioprinting has unique advantages for tissue engineering
and regenerative medicine. Although tissue engineering
and regenerative medicine are two different research topics,
they share the common goal of generating tissues or organs,
either in vitro (tissue engineering) or in vivo (regenerative
medicine). Tissue engineering and regenerative medicine
usually require the wise combination and organization
of biomaterials, cells, and biological factors to fabricate
structures to simulate (in tissue engineering) or to replace
(in regenerative medicine) the targeted tissues or organs,
thereby enabling drug testing, disease modeling, trauma
repair, and reconstruction of tissue functions. The difficulty
of these technologies lies in the spatial positioning of
multiple types of cells and the deposition of different
amounts of cells with ECMs or ECM mimics. In contrast,
3D bioprinting can precisely regulate the proportions, the
positions, and even the densities of specific types of cells
along with biomaterials for tissue reconstruction, fully
demonstrating the advantages of bioprinting in terms of
directed spatial manipulation and layer-by-layer material
controls™®. Therefore, bioprinting has been widely used,
including muscle repair’®, vascular regeneration®, bone
injury treatment!”), and skin wound healing'®.

However, current bioprinting strategies still suffer
from high costs, inconvenient in vitro cell culture and
storage, as well as problems from multiple perspectives,
such as nutritional acquisition, immune rejection, and
maladaptation after in vivo implantation®”. To address
these problems, diverse strategies to fabricate engineered
ECMs have been developed. One of the practical solutions
comes from the usage of exosomes in bioink.

Exosomes are natural biological particles that transport
proteins, lipids, or genetic materials to the recipient
cells. They come from various sources and have certain
biological functions of the parent cells, demonstrating
potential immune privileges. Exosomes from different
sources have distinct functions, which exhibit good
potential for adaptation to various situations. At the
same time, exosomes are easier to store than cells and
can be easily applied to multiple systems'®'!l, Compared
to employing living cells, bioprinting with exosomes can
reduce in vivo rejection, achieve targeted exosome delivery,
and overcome the regulatory and cost-effectiveness issues,
thus addressing multiple challenges in tissue engineering.
Therefore, bioprinting with exosomes is expected to
advance the field of tissue engineering and regenerative
medicine significantly.

In this review, we will discuss the current research
progresses of the combination between bioprinting

and exosomes in tissue engineering, highlighting the
representative applications in bone engineering, vascular
regeneration, nerve repair, and skin regeneration (Figure 1).
At the same time, we will provide an outlook on the future
research directions of bioprinting with exosomes.

2. Exosomes

2.1.The basics of exosomes

Exosomes were first discovered in sheep reticulocytes
in 1983 but were once thought to be a cellular metabolic
waste!>'¥_ In 2007, Valadi et al. discovered that cells could
exchange genetic materials via RNAs in exosomes!'*], which
ignited public interest in these new genetic information
carriers. The 2013 Nobel Prize in Physiology or Medicine
was awarded to the discoverers of the intracellular
vesicular transport and control mechanism, highlighting
the importance of the studies of exosomes. Since then,
researchers have identified a variety of exosomes with
different functions, and a growing number of scholars have
begun to focus on the enormous potential and values of
exosomes for tissue development, disease diagnosis, and
therapeutics.

Exosomes are membrane vesicles released into the
ECM by the fusion of intracellular multi-vesicular bodies
with the cell membrane. They contain various proteins,
lipids, and RNAs and are widely found in biological
fluids. Exosomes have important roles in the transmission
of materials and information between parent cells and
offspring cells while retaining some of the biological
functions of the parent cells""®\. In addition, exosomes also
have reduced immunogenicity, enhanced permeability,
and good retention effects, enabling them to modulate
several complex biological activities (Figure 2)!"7).

2.2. Current applications for exosomes

Exosomes have various biological functions (Figure 3)1.
It can stimulate anti-tumor immune responses, aid
angiogenesis in tumor metastasis!'”), and play important
roles in the propagation of misfolded proteins to
influence the development of neuroinflammation in
neurodegenerative diseases!". Exosomes are also rapidly
evolving in the fields of immunomodulation, cancer
therapy, and regenerative medicine.

2.2.1. Bone tissue engineering

In bone-related disease injuries, exosomes from
mesenchymal stem cells (MSCs) can mediate cartilage
repair by enhancing cell proliferation and infiltration,
reducing apoptosis, and modulating immune responses’..
A series of in vivo studies showed that the administration of
exosomes from MSCs effectively reduced the production of
pro-inflammatory cytokines in chondrocytes, increased the
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Figure 1. The general scheme of exosomes-advanced bioprinting and its applications. Through CAD modeling to recapitulate the structures of the damaged
regions, exosomes can improve the bioprinted constructs for the applications of bone engineering, vascular engineering, nervous injury repair, and skin

regeneration.

expression of ECM components in cartilage, and ultimately
enhanced the regeneration of cartilage tissues?'-2*.

2.2.2. Immunological regulation

The two main mechanisms of exosomes acting in immune
regulation are their direct actions on the targeted cells to
initiate downstream signals and the miRNA-mediated
(indirect) regulations™. Cancer cell-derived exosomes
can block the maturation and migration of dendritic
cells through PD-L1 (programmed death ligand-1).
Meanwhile, exosomes from tumors can inhibit RFXAP
(regulatory factor X-associated protein), an essential
transcription factor for MHC-II (major compatibility
complex II) in dendritic cells, via miR-212-3p, thereby
reducing MHC-II expression and inducing immune
tolerance in dendritic cells™.

2.2.3. Angiogenesis

Exosomes can also be involved in the differentiation of
vascular cells, the promotion of blood flow restoration, and
the formation of the capillary network during angiogenesis.
For instance, MSC-exosomes can increase endothelial
cell lumen formation and promote angiogenesis®®’.
Subcutaneous injection of the exosomes from human
umbilical MSCs in a nude mouse model significantly
increased neovascularization around the infarct areas
in vivo®. In addition, the exosomes from stem cells also
have the ability to induce angiogenesis in the resting state!’).

2.2.4. Neural degeneration

Certain neuronal exosomes are involved in the
accumulation of misfolded proteins in the brain and
accelerate the progression of neurodegenerative disease,
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Figure 2. Biogenesis and release of extracellular vesicles. Extracellular vesicles can be broadly classified into three main classes: (a) Microvesicles are
produced by outward budding and fission of the plasma membrane; (b) exosomes are formed within the endosomal network and released upon fusion of
multi-vesicular bodies with the plasma membrane; (c) apoptotic bodies are released as blebs of cells undergoing apoptosis. EE: early endosome; F: flagella;
ILV: intraluminal vesicles; IM: inner membrane; MVB: multi-vesicular body; N: Nucleus; n: nucleoid; OM: outer membrane; PM: plasma membrane ; Pp:
periplasm. Reprinted with permission from ref."”. Copyright 2015 John Wiley and Sons, Inc.
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Figure 3. Exosomes: A cell-to-cell transit system in the human body with pleiotropic functions. Reprinted with permission from ref."¥. Copyright 2020

American Association for the Advancement of Science.

while others can help remove these misfolded proteins
and perform detoxification, showing the neuroprotective
functions. Haney et al. developed an exosomal drug
delivery system based on oxidase, which was tested

both in vivo and in vitro with Parkinson’s models and
demonstrated the significant neuroprotective effects of this
system, offering further possibilities for the treatment of
neurodegenerative diseases™’.
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2.3. Exosomes and decellularized extracellular
matrix (dECM)

Recently, there has been another biologically derived
material widely used in bioprinting called decellularized
ECM (dECM). It is a combination of 3D scaffolds, proteins,
and bioactive small molecules that remain after removing
all or part of the cellular and nucleic acid components. It is
typically derived from animal, human, or plant tissues®®!l.
While dECM can be used as a bioink in bioprinting, it
differs significantly from exosomes due to the variations
in their sources, collection methods, bioink preparation
processes, and ink properties. Common methods for
preparing dECM involve either vascular system perfusion
or immersion/stirring"*?. During printing, collagen cross-
linking serves as the primary mechanism of solidification.
Therefore, it is mainly compatible with digital light
processing or extrusion-based approaches!*\.

Unlike dECM, exosomes can be collected using
centrifugation techniques and subjected to surface
processing®®!. By adding specific scaffolding proteins,
cytokines, hydrogels, or other materials, exosomes can
be turned into bioinks that primarily deliver signaling
molecules, proteins, and nucleic acids. Exosomes
contain signaling molecules that play a significant role
in tissue repair, giving them potential for applications in
bioprinting™®!. Compared to dECM, exosome therapy
has fewer ethical limitations, lower immunogenicity, and
reduced risks of ectopic transplantation®®. Therefore,
it has been applied to the bioprinting of different tissues
or organs, such as blood vessels ], bones "], skin!*!],
nerves, corneas”, etc. For instance, Zhang et al.
developed a 3D PLA scaffold based on MSC exosomes!“!,
It reduced pro-inflammatory markers and ROS (reactive
oxygen species), showing immune regulation potential,
and enhanced osteogenic differentiation, contributing to
bone formation. Shafei et al. used an alginate hydrogel
with Adipose-derived Stem Cells (ASC) exosomes
as a bioactive scaffold®. It had beneficial effects on
wound closure and promoted re-epithelialization. The
applications of exosomes in different tissues will be
discussed in detail later in the text. However, it should be
noted that exosomes are highly sensitive to environmental
factors such as temperature and pressure since they exist as
extracellular vesicles, causing their storage and transport
more challenging. Further explorations are also needed to
understand the functional mechanisms of exosomes.

Similar to exosomes, dECM may also contain signaling
molecules that can regulate cell behaviors and promote
cell adhesion, migration, and differentiation”**. In
addition, research has demonstrated that dECM materials
have potential applications in tissue remodeling and
organ regeneration by enhancing cellular functions and

promoting a variety of tissue remodeling processes®. The
dECMs from different sources of the tissues have shown
higher tissue-specific heterogeneities for their potential
applications compared to the applications of exosomes.
Currently, many dECM inks are derived from porcine
tissues®**!, raising questions about their biocompatibilities
for later clinical applications. Additionally, their overall
biocompatibilities also require further investigation since
dECM materials are extracted from real biological tissues
that are influenced by age, health status, and environmental
factors. Batch variations and instabilities are also issues
that need addressing.

In summary, both dECM and exosomes have the
potential for applications in tissue engineering. However,
further research is needed to explore their applications and
overcome their respective limitations.

3. Bioprinting

3D printing technology, as an emerging field in regenerative
medicine, is showing great potential compared to
traditional technologies. It has offered a huge possibility
for digital designs with low manufacturing costs. Derived
from 3D printing technology, bioprinting, especially organ
printing, has developed rapidly in recent years. With
technological advances, plenty of great demonstrations
have been fulfilled in various fields, such as bone
engineering, artificial vascular, nerve injury treatment,
skin regeneration, and so on. In order to meet the distinct
functions required in these different applications, the
appropriate bioinks and printing methods need to be
designed and engineered.

3.1.Bioink

Bioink is an important factor that directly affects cell
survival and biomaterial constituent in tissue engineering
and regenerative medicine. Hydrogel is a commonly used
bioink which can mimic the physical characteristics of
ECMs in the body. Generally, two types of hydrogels are
used for bioink: natural-derived hydrogels and synthetic
hydrogels. The materials of natural-derived hydrogels are
mainly generated from the body of the organisms, such
as collagen, alginate, agarose, hyaluronic acid, etc. On the
other hand, a synthetic hydrogel is usually synthesized by
chemical methods. Its physical and chemical properties
are usually controllable to meet specific requirements
for bioprinting, such as good biocompatibility for a high
cell survival rate and optimal viscosity for high printing
resolution. Commonly used synthetic bioink includes
polyethylene glycol (PEG) and Pluronics F127. For the
specific introductions of bioinks, please refer to the review
by Barrs et al.® In addition, according to the preparation
methods of hydrogels, they can be divided into physically
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Figure 4. Bioink systems for printing. Reprinted with permission from ref.**.. Copyright 2019 Royal Society of Chemistry.

cross-linked hydrogels and chemically cross-linked
hydrogels (Figure 4). The specific principles and examples
for hydrogel preparations can refer to the review by
Valot et al.l.

3.2. Printing methods

There are several distinct available printing methods. Here,
we briefly introduce three printing methods categorized
according to ASTM standards, which are extrusion-based,
jetting-based, and vat photopolymerization (VP)-based
bioprinting.

3.2.1. Extrusion-based bioprinting

One of the most common bioprinting methods is
extrusion-based bioprinting (Figure 5A). It combines a
fluid distribution system and an automated robotic system.
The fluid-dispensing system can be driven by a pneumatic-,
mechanical-(piston or screw-driven), or solenoid-based
system®. The working procedure of extrusion-based
bioprinting includes three steps: (i) the hot-melt material
(as the bioink) is liquidized through the heater; (ii) the
bioink is pumped into filaments and sent to the hot-melt
nozzle; (iii) the nozzle head squeezes out of the bioink.
Through printing, CAD layered data can control the
path during the squeezing out of bioink and place it in
the specified positions to solidify. The printed materials
can bond with the surrounding materials, stacking layer
by layer®®. Therefore, a stable bioink is needed for this
approach. However, this technology has shortcomings,

such as a limited cell survival rate and relatively low
resolutions®..

3.2.2. Jetting-based bioprinting

Inkjet bioprinting is derived from commercial two-
dimensional (2D) inkjet printing technologies (Figure 5B).
The main difference between this technology and
extrusion-based bioprinting is that the bioink is produced
at a point where the nozzle head hits. Therefore, jetting-
based bioprinting has the advantage of high resolution.
For jetting-based bioprinting, its bioink must be liquid-
like in case of blocking the nozzle. Besides, the viscosity
of biological ink is also difficult to control®. Meanwhile,
the side effect brought by high resolution is slow printing
speed. In addition, the discontinuous droplets can also
lead to a weak mechanical strength of the bioprinted
structure®). Therefore, it is recommended to adjust the
mechanical properties of bioink to guarantee the printing
quality. For instance, Suntornnond et al. modified GelMA
through saponification and heat treatment, effectively
improving its printability and biocompatibility in thermal
injection printing®®?..

3.2.3. Vat photopolymerization (VP)-based
bioprinting

The working principle of VP-based bioprinting (laser-
assisted bioprinting [LAB]) is that the laser focuses on the
glass plate absorption layer to produce a high-pressure
liquid foam and to push the cells to the acceptable
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(VP)-based bioprinting: C1, digital light processing (DLP); C2, stereolithography (SLA); C3, two-photon polymerization (2PP)!.

substratel®. The VP-based bioprinting is divided into
stereolithography (SLA), digital light processing (DLP),
and two-photon polymerization (2PP)!°!l.

In the SLA system (Figure 5C1), two different methods
can be used for optical solidification: (i) top-down printing
approach, that is, the scanning laser solidification above
the vat cures a layer of resin on the build platform, and
it is lowered into the vat to repeat the curing process;
(ii) bottom-up printing approach, that is, the scanning
laser is located at the bottom of the vat, and the build
platform is raised above the bioresin vat via a “peeling” step
between each printed layer. DLP (Figure 5C2) is another
method for optically curing biological resin. Using digital
micromirror devices (DMD) in DLP helps to obtain a layer
of optical solid resin instead of single-point solidification
in SLA. 2PP (Figure 5C3) process is caused by three-order
non-linear absorption within the focal region; the beam
of the flying laser is closely focused on the photoresist
(liquid biological resin) on the glass coverslip with an oil-
immersion objective lens to fabricate high-resolution 3D
structures beyond the optical diftraction limit by moving
the focused beam within the photoresist.

The advantage of VP-based bioprinting is that the
nozzle is open; thus, there is no nozzle blockage issue.
At the same time, the cell damage is limited, leading to a
95% cell survival rate!®?. However, the effect of laser on
cells is not well-defined yet, which may have considerable
cytotoxicity!®.

4, Biomedical applications of bioprinting
with exosomes

4.1.Bone engineering

Traditional bone transplantation is still one of the common
ways to treat bone damage or loss. However, due to the
body’s rejection, allografts are likely to cause a series of
complications!®, so their application is limited. Applying
tissue engineering approaches (e.g., bioprinting or organ
printing) to repair bone damage and loss is a relatively
novel way and also a hot research topic at present.

However, the bioactivities of several traditional bioink
for bone repair are limited'®”. Meanwhile, exosomes with
the size of 50-120 nm have relatively high biocompatibility
and a strong ability to promote bone formation, providing
a new idea for the strategies of bone regeneration. Great
bone specificity and strong bone regeneration properties
make exosomes significantly valuable for therapeutics,
which can enhance bone growth to treat clinical bone
diseases!®. Therefore, loading exosomes into bioink for
bone tissue bioprinting has become one of the practical
options to build highly bioactive structures for bone repair.

Sun et al. applied 3D printing technology to construct
porous scaffolds with P-tricalcium phosphate (B-TCP)
bioceramic-induced macrophage exosomes®!. The
system exhibited a predefined structure and a persistent
release of exosomes, displaying improved effects in
immunomodulatory and  osteogenesis/angiogenesis
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groups at 6 and 12 weeks. (ii) Quantitative analysis of BV/TV in the different groups***". Adapted with permission from ref'*”’. Copyright 2020 Elsevier LTD.
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(Figure 6A). It provided a novel inspiration for bone
regeneration and the design of therapeutic biomaterials
with improved immune regulations.

Of the essential elements of tissue engineering,
cell seeding is important for inducing effective tissue
regeneration. However, cell-based tissue engineering
approaches also have many drawbacks, such as limited
sources and restricted expansion capacities of donor cells,
immune rejection, and many others. Thus, cell-free tissue
engineering has been extensively explored in regenerative
medicine as a safe, effective, and off-the-shelf strategy. Zha
et al. developed a cell-free tissue engineering system using
functional exosomes instead of seeding cells!®”!. Gene-
activated engineered exosomes were constructed by using
ATDC5-derived exosomes to encapsulate the VEGF gene.
The specific exosomal-anchored peptide CP05 acted as a
flexible linker, effectively linking the engineered exosome
nanoparticles with 3D-printed porous bone scaffolds
(Figure 6B). The scaffolds were tested to effectively induce
the bulk of vascularized bone regeneration, illuminating
the potential of functional exosomes in acellular tissue
engineering.

MSCs have strong proliferative ability and multi-
directional differentiation potential. It can secrete cytokines
through paracrine effects to repair tissues. Zhang et al.
developed a bioactive 3D PLA scaffold using an exosome-
based strategy!®”. PLA-Exo scaffold can reduce the
expression of the pro-inflammatory markers and limit the
production of the ROS, indicating its immunoregulatory
potential. Meanwhile, the authors confirmed that it could
enhance osteogenic differentiation in the osteogenic tests,
showing potential applications in bone tissue regeneration
(Figure 6C).

Similarly, Chen et al. also designed a bioscaffold for
delivering MSC exosomes. They fabricated a 3D-printed
cartilage ECM/gelatin methacrylate/exosome scaffold with
radially oriented channels using desktop-stereolithography
technology (Figure 6D), which significantly facilitated
cartilage regeneration in the animal model’®®\. At the same
time, the 3D-printed radial exosome scaffolds also can be a
promising strategy for early osteoarthritis treatment.

In addition to the direct combination of bone bioprinting
and osteogenic exosomes for bone tissue repair, the following
system also offered new opportunities for the applications of
exosomes in bone bioprinting. Wu et al. added the Schwann
cell-derived exosomes to bone marrow stromal cell culture
environments and found they could effectively promote the
migration, proliferation, and differentiation of bone marrow
stromal cells®™ (Figure 6E). In addition, the combination
of exosomes and porous Ti6Al4V implants provided both
mechanical support and open pores, exhibiting good

biological activity. It was also a therapeutic strategy with a
high potential for treating bone defects.

Exosomes are considered a powerful supplement for
cell therapy in regenerative medicine for their excellent
biocompatibility, efficient cell internalization, and strong
load capacities. However, exosomes still have some
shortcomings, such as low yield, unstable efficiency,
and lacking drug delivery routes, which can affect the
further applications of biomolecular carriers. Zha et al.
developed a novel exosome-mimetics, which had a similar
structure and biomarkers in comparison with the routine
exosomes'”’. It can be generated with a high yield and has
been applied to construct an engineered gene-activated
matrix for local therapy, opening up a new idea for using
exosomes.

Furthermore, some researchers have also provided new
ideas to improve the therapeutic efficacy of exosomes. Li
et al. developed a stem cell-mediated gene therapy in which
mediator MSCs were genetically engineered by the bone
morphogenetic protein-2 gene to produce exosomes with
enhanced bone regeneration potency”!. The accelerating
effect in bone healing and good biocompatibility suggested
the potential clinical application of this strategy if applied
with bioprinting.

In summary, though exosomes have been widely
studied, the research of 3D bioprinting with exosomes has
been initiated in bone tissue engineering and holds great
potential in tissue regeneration.

4.2.Vascular engineering

Exosome bioprinting technology has also been applied to
vascular engineering. The application of exosomes in 3D
printing can promote the sustained release of exosomes and
improve their biological activity. Sun et al. used 3D printing
technology to construct porous scaffolds for macrophage
exosomes (BC-Exos) induced by B-tricalcium phosphate
(phosphate bioceramics), and realized 3D-printed BC-
Exo scaffolds. The system had a predefined structure and
enabled the continuous release of exosomes (Figure 7A )],
It also showed significant immunomodulatory effects
and improved osteogenesis/angiogenesis properties. This
design of a cell-free 3D-printed scaffold using biomaterials
to activate macrophage exosomes has increased the
application of immune cell-derived exosomes in tissue
regeneration and provided a new direction for the design
of bioprinted systems. This study suggested that the 3D
printing of bioceramics-induced macrophage exosomes
can be a useful strategy for tissue engineering and
regenerative medicine.

In terms of the clinical application of exosomes derived
from bone marrow MSCs, Zhang et al. developed a system
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A

Bioceramics

Ischemic Model

Figure 7. Exosomes promote bioprinting for vascular engineering. (A) Schematic illustration showing the preparation of bioceramic-induced macrophage
exosomes (BC-Exos) and 3D printing of BC-Exos for immunomodulation, osteogenesis, and angiogenesis of macrophages, mesenchymal stem cells
(MSCs), and endothelial cells. Adapted with permission from ref.*l. Copyright 2021 Springer Nature Limited. (B) Schematic illustration of hP-MSCs-
derived exosomes incorporated with CS hydrogel for muscle regeneration. Adapted with permission from ref.”?. Copyright 2018 American Chemical

Society.

combining exosomes with chitosan hydrogels to enhance
the therapeutic effect of human placenta-derived MSCs
(hP-MSCs) derived exosomes” (Figure 7B). The chitosan
hydrogels had the characteristics that can enhance the
retention and stability of exosomes. In addition, the
hydrogels also further improved the therapeutic effect of
angiogenesis in hindlimb ischemia, as shown by firefly
luciferase imaging. This strategy may be of great practical
value for cell-free therapy.

4.3. Nerve injury repair

Nervous injury includes central nervous injury and
peripheral nerve injury. It has the characteristics of high
incidence and inaccurate pathogenesis; furthermore, it still
lacks a clear treatment strategy yet”\. In recent years, many
researchers have focused on bioprinting scaffolds with
exosomes. These systems have the following advantages:
(A) They can effectively maintain the exosomes of the
damaged part and retain its performance and structural
characteristics. (B) The exosomes are released into ECM
to adjust the phenotype of neighboring cells. (C) It can be
combined with the injured tissues to support the migration
of neighboring cells. Once the neighboring cells migrate to
the biological scaffold, the exosomes can be absorbed to
promote tissue regeneration”l,

Liu et al. prepared 3D-printed collagen/silk fibroin/
hypoxia-pretreated human umbilical cord MSCs
(HUCMSCs)-derived  exosomes  scaffolds (3D-CS-
HMExos) and implanted it into the injured brain of the
small hunting dog to treat traumatic brain injury (TBI)"*\,
The experimental results showed that the method could
effectively promote nerve regeneration after TBI and, at the
same time, inhibit neuritis and the apoptosis of neurotic
cells, providing a new strategy for treating TBI (Figure 8A).
Additionally, Hsu et al. developed alginate and HUCMSCs
exosomes”®. The scaffold had anti-inoculation, anti-

inflammatory, and neurotrophic effects. It also has been
shown that the pain caused by L5/6 spinal nerve ligation
(SNL) can be treated by this scaffold.

Rao et al. combined biodegradable chitin with
exosomes derived from the gums to treat the sciatic defects
of rats™). The study results showed that exosomes were
effective for treating nerve injuries, and it was a method
of nerve regeneration with excellent performance. Han
et al. proposed a controllable 3D external hydrogel
mixed microneedle array patch to achieve the method of
repairing spinal cord injury (Figure 8B)"¢. They cultivated
the exogenous body of 3D mesenchymal stem cells (MSC-
EXO). Different from other studies of the single-layer (2D)
exterior body of hydraulic gel, 3D-EXO can maintain the
stem nature and improve the effects of MSCs. In addition,
the study also compared the effects of 2D and 3D exosomes
on the treatment of nerve repair, and the results showed
that the 3D exosomes have higher therapeutic efficiency.
This result also revealed that biological 3D printing could
effectively improve the efficiency of the repair.

At present, the demonstrations of biological 3D
printing technology with exosomes are still limited, but
many studies have been put into treatment with exosomes
and hydrogels. Liu et al. tested the rigidity of hydrogels in
loaded exosomes in nerve repair®. The study showed that
soft hydrogel can better repair peripheral nerve damage.
This result also revealed the selection criteria of hydrogels
in nerve repair. Li et al. used exosomes derived from the
human MSC in an EXOO-PGEL (EXOO-PGEL) for
peptides””.. The tissue nerve-derived injury has developed
an innovative strategy for exogenous physical delivery for
spinal cord injury treatment (Figure 8C). Wang et al. used
retinal ganglion cells of rats (RGC) exosomes as nano-sized
vesicles, loading PACAP38 through exosomes anchoring
peptide CPO5 (Exopacap38) to treat external injuries
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Figure 8. The applications of biomedical engineering for nerve injury repair. (A) 3D-printed collagen/silk fibroin/hypoxia-pretreated human umbilical
cord mesenchymal stem cells (HUCMSCs)-derived exosomes scaffolds (3D-CS-HMExos) and implanted in the injured brain of the small hunting dog,
which used to treat traumatic brain injury (TBI). Adapted with permission from ref.”. Copyright 2022 Frontiers Media S. A. (B) The controllable three-
dimensional exterior hydrogel mixed microneedle array patch to achieve the repair of spinal cord injury. Adapted with permission from ref.”".. Copyright
2022 American Chemical Society. (C) The exogenous body derived from human MSC was fixed in an exo-PGEL (Exo-PGEL) that promoted spinal cord
regeneration and recovery of hind limbs. Adapted with permission from ref.””.. Copyright 2020 American Chemical Society.

(traumatic optic neuropathy[TON])®!. It overcame the
shortcomings of low tissue penetration and a short half-life
period and improved the transfer efficiency of neurogenic
peptides.

Bioprinting technology with exosomes is an innovative
strategy for treating nerve damage. Compared with other
bioink, exosomes can effectively improve bioactivity. The
potential of exosomes in treating neural diseases, including
those related to neurotransmitters, is evident from their
nature discussed in the first chapter and this section.

4.4, Skin regeneration

Conventional means of skin repair include topical
application of relevant drugs, exposure to lasers, and skin
grafting®>*’]. In recent years, researchers have discovered
the linkage between exosomes and skin diseases®**l. They
found that exosomes can participate in the physiological
and pathological processes of the skin, such as regulating
the secretion of pro-inflammatory cytokines in the
microenvironment of skin, promoting vascularization and
collagen deposition in some skin defect diseases, as well
as regulating the proliferation and differentiation of skin
fibroblasts®***l. Most importantly, people have discovered
that exosomes positively affect skin regeneration and
repair.

Shafei et al. used an alginate hydrogel loaded with
adipose stem cell-derived exosomes as a bioactive

scaffold and found that it not only had good effects on
wound closure, but also promoted a high degree of re-
epithelialization . They characterized the physical
and biochemical properties of the hydrogel and found
that the prepared exosome-hydrogel had excellent
biodegradability and biocompatibility. The exosome-
hydrogel significantly improved wound closure, collagen
synthesis, and angiogenesis in the wound area. The results
of this study also provided a cell-free therapeutic strategy
for wound healing treatments using composite structures
of exosomes-encapsulated alginate hydrogels, showing its
great potential for application in bioprinting.

One of the common complications of diabetes is
impaired wound healing, characterized by inadequate
angiogenesis and susceptibility to infections, which can
lead to non-healing chronic diabetic ulcers!®!. Wang et al.
prepared a polysaccharide-based dressing (FEP) exosome-
contained scaffold dressing with heat-sensitive, injectable,
adhesive, self-healing, antibacterial, hemostatic, and UV
shielding properties to stimulate early angiogenesis in
diabetic wounds"™. It has been demonstrated that the
system thus promoted skin healing and reconstruction.
The scaffold can chronically release exosomes from
adipose stem cells, enhancing the proliferation, migration,
and tubular formation of stimulated HUVECs, and
promoting diabetic wound healing. The synergistic effects
of these stimulatory responses promoted granulation tissue
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formation and collagen deposition, driving wound re-
epithelization and significantly increasing the regeneration
of skin appendages. In addition, it also reduces the
formation of scar tissue. Exosome-loaded FEP hydrogels
have shown great potential in promoting diabetic wound
healing, providing strong evidence for their clinical
potential in skin regeneration.

Exosomes combined with bioprinting for skin tissue
engineering may mainly refer to the exosome-contained,
bioprinted scaffolds to aid wound closure and promote the
stable release of therapeutic exosomes in predesigned areas.
The combination improves therapeutic efficacy and further
takes advantage of the high bioactivity of exosomes”!l.
Although it is still at an early stage of development
and more focus on the research is needed, based on the
current demonstrated examples about the combination
of exosomes and hydrogels, it may be possible to modify
the designs of exosome-loaded hydrogels and apply them
to the preparation of bioinks, thus building high-activity
exosome-bioprinting systems, which will be one of the
promising research directions in the field of regenerative
medicine in the near future.

4.5, Other applications

4.5.1. Corneal repair

Currently, bioprinting with exosomes has not yet been
systematically studied in the field of corneal repair. However,
there has been relatively in-depth research on using
exosomes for the treatment of corneal injury. For instance,
Samaeekia et al. isolated corneal mesenchymal stem cell
(cMSCs) exosomes from humans and found a significant
healing effect of the exosomes on corneal epithelial cell
damage®. Shojaati et al. demonstrated that exosomes
produced by corneal stromal stem cells (CSSC) inhibited
the formation of fibrotic scarring after corneal injury and
stimulated the regeneration of transparent stromal tissue!**!.

Several different 3D bioprinting strategies have been
developed for the fabrication of corneal donor graft
materials. Sorkio et al. used stem cells and laser-assisted
bioprinting to produce a 3D corneal tissue that mimicked
the structure of natural corneal tissue. The cells in the
structure maintained good viability®. Isaacson et al
used a low-viscosity bioink made from sodium alginate
and methacrylated type I collagen to produce an artificial
corneal substitute by 3D bioprinting, which also had good
biocompatibilities and bioactivities.

4.5.2. Oral repair

The oral cavity contains various tissues, such as teeth, jaw,
gums, oral mucosa, gland, and cartilage. Stem cells in these
tissues can secrete different functional exosomes, and these
exosomes have different biological effects. For example,

studies have found that exosomes secreted from dental
pulp stem cells (DPSCs-E) inhibited the differentiation of
CD4*T cells into T helper 17 cells (Th17) and reduced the
secretions of pro-inflammatory factors IL-17 and TNF-a,
while promoted the polarization of CD4'T cells into Treg
and increased the release of anti-inflammatory factors IL-10
and TGF-Br. Wei et al. used stem cells from human
exfoliated deciduous teeth (SHED)-derived exosomes
(SHED-Exo) in the bone loss area caused by periodontitis
in a mouse model®”. SHED-Exo specifically promoted
BMSCs osteogenesis and inhibited adipogenesis. In
addition, SHED-Exo can further promote osteogenic
differentiation and bone formation in BMSCs.

Meanwhile, in dental medicine, biological 3D printing
technology has been widely used to cure diseases such as
tooth osteo-deficiency. Tian et al. mixed sodium alginate
(SA), gelatin (Gel), and nano-hydroxyapatite (na-HA)
to prepare a hydrogel composite!”. Human periodontal
ligament stem cells (HPDLSCs) were mixed with SA/Gel/
na-HA printing slurry to create a “bioink” to prepare SA/
Gel/na-HA/hPDLSC:s cell bioscaffolds. The results showed
that the SA/GEL/N-HA composite hydrogel had good
streaming performance and was suitable for printing.
Cell biological stent had good biocompatibility and was
conducive to the osteoma of HPDLSCs.

In all, there have been great potential for the use of
exogenous biological printing for corneal repair and oral
repair, while the current research applications still have great
challenges from the perspective of real clinical applications.

5. Summary

3D bioprinting technology is a new field that has emerged
in recent years. However, their translational application
in the clinic is still lagging due to their limited ability
to produce bioprinted constructs with the necessary
biological activities to integrate with host tissues. Exosomes
have high biological activity as an important medium of
information transmission in organisms. They have become
one of the potential materials for application in bioprinting
systems. Combining exosomes as bioink with bioprinting
technology can compensate for the lack of biological
activity of traditional 3D bioprinting. Traditional 3D
bioprinting bioinks for scaffold manufacturing include
alginate, gelatin, and collagen. Gelatin is a soluble protein
compound obtained by partial hydrolysis of collagen,
which is the main fibrin component in bone, cartilage, and
skin!, while natural alginate is a bioinert material (i.e., it
lacks cell adhesion part) with limited biodegradation 1%,
Compared with the above biological materials, exosomes
have shown higher biological activity and targeting in cell
signaling and drug release!"™. Therefore, exosomes can
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effectively affect the activity of cells and the development
of tissues through multiple signaling pathways without
causing immune responses. In addition, some stem cell-
derived exosomes also have exhibited immunomodulatory
and tissue regeneration abilities!"*.. From the perspective
of enhancing the biological activity of biological ink by
exosomes, this paper briefly introduced exosomes and 3D
bioprinting technology and summarized the application
and progress of exosomes and 3D bioprinting technology
in bone, blood vessel, nerve, and skin in recent years.
At present, there have been many studies on the use of
exosome hydrogels for the treatment of diseases. This
paper briefly combed them and outlined their advantages
and disadvantages, as detailed in Table 1.

However, despite the exciting progress to date, several
challenges remain. Firstly, good-quality exosomes should
be obtained before printing. However, the current challenge
lies not only in the isolation of exosomes before preparing
exosome-rich bioinks. At present, the methods for extracting
exosomes mainly include differential centrifugation*,
volume exclusion chromatography*, and immunoaffinity
capture"”. Each method has advantages and disadvantages,
but the extraction method to be used is determined by the
sample source and the intended use of exosomes. A few
studies have been conducted on the rapid and accurate
preparation of bioactive exosomes with a low loss rate™*!.
Secondly, during the printing process, it is necessary to
ensure that the exosomes are put into the bioprinting
system while maintaining sufficient biological activity. For
instance, integrating exosomes with bone tissue engineering
materials gives rise to a favorable environment for exosomes
to exert their functions®!. However, it has also been found

that exosomes cannot exert sustained function due to their
short half-life. Although the combination of exosomes and
liposomes can complement each other, sustained release of
exosomes has not been demonstrated to accumulate in the
bone marrow!'*. In the area of angiogenesis, there have been
cases in which chitosan hydrogels have been used to improve
the stability of proteins and microRNAs in exosomes
significantly. However, the release of exosomes depended
on the permeation and biodegradation of chitosan hydrogel,
which made this process difficult to control™. A class of
peptide-modified adhesive hydrogels (Exo-pGel) therapies
provided a promising strategy for the effective treatment
of central nervous system diseases based on exosome
implantation. In another study, the combination of size
exclusion chromatography and ultracentrifugation was used,
and before ultracentrifugation, the qEV column was used to
exclude microvesicles from the total extracellular vesicles
(EVs), and the highly bioactive exosomes were successfully
isolated and purified””. The exosomes, after being added
to biomaterials, can enhance the osteogenic ability of the
body and treat neurological diseases. However, maintaining
the biological activity of exosomes is still a great challenge.
Thirdly, 3D printing can print a variety of tissues and organs,
but the current applications of exosomes are limited, and
the studies on their functions and clinical applications are
inadequate. This paper mainly focuses on the fields of bone
engineering, vascular engineering, nerve injury treatment,
and skin regeneration. In conclusion, the applications of
exosomes to promote bioprinting in tissue engineering and
regenerative medicine in other fields such as liver tissue
regeneration, kidney tissue regeneration, and lung tissue
regeneration have great potential and need to be developed.
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